cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111912 Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)).

This page as a plain text file.
%I A111912 #22 Jan 08 2025 10:13:28
%S A111912 0,2,3,3,3,5,4,6,3,5,1,5,0,2,-3,1,-3,-1,-4,-2,-3,-1,-1,-1,0,2,3,3,3,5,
%T A111912 4,6,3,5,1,5,0,2,-3,1,-3,-1,-4,-2,-3,-1,-1,-1,0,2,3,3,3,5,4,6,3,5,1,5,
%U A111912 0,2,-3,1,-3,-1,-4,-2,-3,-1,-1,-1
%N A111912 Expansion of x*(2 +3*x +x^2 -2*x^5 -x^7 -x^8)/((1-x)*(1+x)*(1-x^4+x^8)).
%C A111912 Sequence has period 24.
%H A111912 Muniru A Asiru, <a href="/A111912/b111912.txt">Table of n, a(n) for n = 0..2000</a>
%H A111912 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,-1,0,-1,0,1).
%p A111912 seq(coeff(series((x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))),x,n+1),x,n),n=0..75); # _Muniru A Asiru_, Jun 06 2018
%t A111912 LinearRecurrence[{0,1,0,1,0,-1,0,-1,0,1}, {0,2,3,3,3,5,4,6,3,5}, 75] (* _G. C. Greubel_, Feb 12 2021 *)
%o A111912 (PARI) Vec(x*(-2-3*x-x^2+2*x^5+x^7+x^8)/((x-1)*(x+1)*(x^8-x^4+1))+O(x^99)) \\ _Charles R Greathouse IV_, Sep 26 2012
%o A111912 (Sage)
%o A111912 def A111912_list(prec):
%o A111912     P.<x> = PowerSeriesRing(ZZ, prec)
%o A111912     return P( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) ).list()
%o A111912 A111912_list(75) # _G. C. Greubel_, Feb 12 2021
%o A111912 (Magma)
%o A111912 R<x>:=PowerSeriesRing(Integers(), 75);
%o A111912 Coefficients(R!( x*(2+3*x+x^2-2*x^5-x^7-x^8)/((1-x)*(1+x)*(1-x^4+x^8)) )); // _G. C. Greubel_, Feb 12 2021
%Y A111912 Cf. A085846, A111913, A111914, A111915.
%K A111912 sign,easy,less
%O A111912 0,2
%A A111912 _Creighton Dement_, Aug 20 2005