cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111923 Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^5)).

This page as a plain text file.
%I A111923 #15 Feb 16 2025 08:32:58
%S A111923 1,32,2592,82944,51840000,17280000,41489280000,1327656960000,
%T A111923 322620641280000,322620641280000,4723488808980480000,
%U A111923 4723488808980480000,134907563873291489280000,134907563873291489280000
%N A111923 Denominator of x(n) = Sum_{k=1..n} ((odd part of k)/(k^5)).
%C A111923 Numerator of x(n) = A111922(n);
%C A111923 lim_{n->infinity} x(n) = lim_{n->infinity} A111922(n)/a(n) = (Pi^4)/93 = 30*zeta(4)/31.
%D A111923 G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 1, Sect. 6, Problem 50.
%H A111923 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/OddPart.html">Odd Part</a>
%H A111923 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunction.html">Riemann Zeta Function</a>
%Y A111923 Cf. A000265, A013662, A111930, A111919, A111921, A111922.
%K A111923 nonn,frac
%O A111923 1,2
%A A111923 _Reinhard Zumkeller_, Aug 21 2005