A111924 Triangle of Bessel numbers read by rows. Row n gives T(n,n), T(n,n-1), T(n,n-2), ..., T(n,1) for n >= 1.
1, 1, 1, 1, 3, 0, 1, 6, 3, 0, 1, 10, 15, 0, 0, 1, 15, 45, 15, 0, 0, 1, 21, 105, 105, 0, 0, 0, 1, 28, 210, 420, 105, 0, 0, 0, 1, 36, 378, 1260, 945, 0, 0, 0, 0, 1, 45, 630, 3150, 4725, 945, 0, 0, 0, 0, 1, 55, 990, 6930, 17325, 10395, 0, 0, 0, 0, 0, 1, 66, 1485, 13860, 51975, 62370
Offset: 1
Examples
Triangle begins: 1 1 1 1 3 0 1 6 3 0 1 10 15 0 0 1 15 45 15 0 0 1 21 105 105 0 0 0 1 28 210 420 105 0 0 0 1 36 378 1260 945 0 0 0 0
References
- J. Y. Choi and J. D. H. Smith, On the unimodality and combinatorics of Bessel numbers, Discrete Math., 264 (2003), 45-53.
Programs
-
Mathematica
T[n_, 0] = 0; T[1, 1] = 1; T[2, 1] = 1; T[n_, k_] := T[n - 1, k - 1] + (n - 1)T[n - 2, k - 1]; Table[T[n, k], {n, 12}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
Formula
The Choi-Smith reference gives many further properties and formulas.
T(n, k) = T(n-1, k-1) + (n-1)*T(n-2, k-1).
Extensions
More terms from Robert G. Wilson v, Dec 09 2005
Comments