cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111941 Matrix log of triangle A111940, which shifts columns left and up under matrix inverse; these terms are the result of multiplying each element in row n and column k by (n-k)!.

This page as a plain text file.
%I A111941 #21 Dec 09 2015 08:43:03
%S A111941 0,1,0,-1,-1,0,1,1,1,0,-2,-1,-1,-1,0,4,2,1,1,1,0,-12,-4,-2,-1,-1,-1,0,
%T A111941 36,12,4,2,1,1,1,0,-144,-36,-12,-4,-2,-1,-1,-1,0,576,144,36,12,4,2,1,
%U A111941 1,1,0,-2880,-576,-144,-36,-12,-4,-2,-1,-1,-1,0,14400,2880,576,144,36,12,4,2,1,1,1,0,-86400,-14400,-2880,-576,-144,-36
%N A111941 Matrix log of triangle A111940, which shifts columns left and up under matrix inverse; these terms are the result of multiplying each element in row n and column k by (n-k)!.
%F A111941 T(n, k) = (-1)^k*T(n-k, 0) = (-1)^k*A111942(n-k) for n>=k>=0.
%e A111941 Triangle begins:
%e A111941 0;
%e A111941 1, 0;
%e A111941 -1, -1, 0;
%e A111941 1, 1, 1, 0;
%e A111941 -2, -1, -1, -1, 0;
%e A111941 4, 2, 1, 1, 1, 0;
%e A111941 -12, -4, -2, -1, -1, -1, 0;
%e A111941 36, 12, 4, 2, 1, 1, 1, 0;
%e A111941 -144, -36, -12, -4, -2, -1, -1, -1, 0;
%e A111941 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
%e A111941 -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
%e A111941 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
%e A111941 -86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
%e A111941 518400, 86400, 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
%e A111941 -3628800, -518400, -86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0; ...
%e A111941 where, apart from signs, the columns are all the same (A111942).
%e A111941 ...
%e A111941 Triangle A111940 begins:
%e A111941 1;
%e A111941 1, 1;
%e A111941 -1, -1, 1;
%e A111941 0, 0, 1, 1;
%e A111941 0, 0, -1, -1, 1;
%e A111941 0, 0, 0, 0, 1, 1;
%e A111941 0, 0, 0, 0, -1, -1, 1;
%e A111941 0, 0, 0, 0, 0, 0, 1 ,1;
%e A111941 0, 0, 0, 0, 0, 0, -1, -1, 1; ...
%e A111941 where the matrix inverse shifts columns left and up one place.
%e A111941 ...
%e A111941 The matrix log of A111940, with factorial denominators, begins:
%e A111941 0;
%e A111941 1/1!, 0;
%e A111941 -1/2!, -1/1!, 0;
%e A111941 1/3!, 1/2!, 1/1!, 0;
%e A111941 -2/4!, -1/3!, -1/2!, -1/1!, 0;
%e A111941 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
%e A111941 -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
%e A111941 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
%e A111941 -144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
%e A111941 576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
%e A111941 -2880/10!, -576/9!, -144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
%e A111941 14400/11!, 2880/10!, 576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0; ...
%e A111941 Note that the square of the matrix log of A111940 begins:
%e A111941 0;
%e A111941 0, 0;
%e A111941 -1, 0, 0;
%e A111941 0, -1, 0, 0;
%e A111941 -1/12, 0, -1, 0, 0;
%e A111941 0, -1/12, 0, -1, 0, 0;
%e A111941 -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 0, -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
%e A111941 -1/16632, 0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0; ...
%e A111941 where nonzero terms are negative unit fractions with denominators given by A002544:
%e A111941 [1, 12, 90, 560, 3150, 16632, 84084, 411840, ...,  C(2*n+1,n)*(n+1)^2, ...].
%o A111941 (PARI) {T(n,k,q=-1) = local(A=Mat(1),B); if(n<k||k<0,0, for(m=1,n+1, B = matrix(m,m); for(i=1,m, for(j=1,i, if(j==i, B[i,j]=1, if(j==1, B[i,j] = (A^q)[i-1,1], B[i,j] = (A^q)[i-1,j-1]));)); A=B); B=sum(i=1,#A,-(A^0-A)^i/i); return((n-k)!*B[n+1,k+1]))}
%o A111941 for(n=0, 16, for(k=0, n, print1(T(n, k, -1), ", ")); print(""))
%Y A111941 Cf. A111940 (triangle), A111942 (column 0), A110504 (variant).
%K A111941 frac,sign,tabl
%O A111941 0,11
%A A111941 _Paul D. Hanna_, Aug 23 2005