cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111943 Prime p with prime gap q - p of n-th record Cramer-Shanks-Granville ratio, where q is smallest prime larger than p and C-S-G ratio is (q-p)/(log p)^2.

This page as a plain text file.
%I A111943 #70 Feb 16 2025 08:32:58
%S A111943 23,113,1327,31397,370261,2010733,20831323,25056082087,2614941710599,
%T A111943 19581334192423,218209405436543,1693182318746371
%N A111943 Prime p with prime gap q - p of n-th record Cramer-Shanks-Granville ratio, where q is smallest prime larger than p and C-S-G ratio is (q-p)/(log p)^2.
%C A111943 Primes less than 23 are anomalous and are excluded.
%C A111943 a(12) was discovered by Bertil Nyman in 1999.
%C A111943 Shanks conjectures that the ratio will never reach 1. Granville conjectures the opposite: that the ratio will exceed or come arbitrarily close to 2/e^gamma = 1.1229....
%C A111943 Firoozbakht's conjecture implies that the ratio is below 1-1/log(p) for all primes p>=11; see Th.1 of arXiv:1506.03042. In Cramér's probabilistic model of primes, the ratio is below 1-1/log(p) for almost all maximal gaps between primes; see A235402. - _Alexei Kourbatov_, Jan 28 2016
%D A111943 R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, A8.
%H A111943 Andrew Granville, <a href="http://www.dms.umontreal.ca/~andrew/PDF/cramer.pdf">Harald Cramér and the distribution of prime numbers</a>, Scandinavian Actuarial J. 1 (1995), pp. 12-28.
%H A111943 Alexei Kourbatov, <a href="http://arxiv.org/abs/1506.03042">Upper bounds for prime gaps related to Firoozbakht's conjecture</a>, arXiv:1506.03042 [math.NT], 2015; J. Integer Sequences, 18 (2015), Article 15.11.2.
%H A111943 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html">First occurrence prime gaps</a> [For local copy see A000101]
%H A111943 Daniel Shanks, <a href="http://dx.doi.org/10.2307/2002951">On maximal gaps between successive primes</a>, Math. Comp. 18 (88) (1964), 646-651.
%H A111943 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeGaps.html">Prime Gaps</a>.
%H A111943 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cramer-GranvilleConjecture.html">Cramer-Granville Conjecture</a>.
%H A111943 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ShanksConjecture.html">Shanks Conjecture</a> (and Wolf Conjecture).
%e A111943 -----------------------------
%e A111943 n   ratio                a(n)
%e A111943 -----------------------------
%e A111943 1   0.6103                23
%e A111943 2   0.6264               113
%e A111943 3   0.6575              1327
%e A111943 4   0.6715             31397
%e A111943 5   0.6812            370261
%e A111943 6   0.7025           2010733
%e A111943 7   0.7394          20831323
%e A111943 8   0.7953       25056082087
%e A111943 9   0.7975     2614941710599
%e A111943 10  0.8177    19581334192423
%e A111943 11  0.8311   218209405436543
%e A111943 12  0.9206  1693182318746371
%o A111943 (PARI) r=CSG=0;p=13;forprime(q=17,1e8,if(q-p>r,r=q-p; t=r/log(p)^2; if(t>CSG, CSG=t; print1(p", ")));p=q) \\ _Charles R Greathouse IV_, Apr 07 2013
%Y A111943 Subsequence of A002386.
%Y A111943 Cf. A111870, A166363.
%K A111943 nonn,hard
%O A111943 1,1
%A A111943 _N. J. A. Sloane_, following emails from _R. K. Guy_ and _Ed Pegg Jr_, Nov 27 2005
%E A111943 Corrected and edited (p_n could be misinterpreted as the n-th prime) by _Daniel Forgues_, Nov 20 2009
%E A111943 Edited by _Charles R Greathouse IV_, May 14 2010