cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111961 Expansion of 1/(sqrt(1-2x-3x^2)-x).

Original entry on oeis.org

1, 2, 6, 18, 56, 176, 558, 1778, 5686, 18230, 58558, 188366, 606588, 1955044, 6305418, 20347342, 65689088, 212146400, 685342218, 2214556478, 7157409064, 23136645472, 74801223162, 241863933094, 782131232390, 2529458676326
Offset: 0

Views

Author

Paul Barry, Aug 23 2005

Keywords

Comments

Row sums of A111960.
A transform of the Fibonacci numbers. - Paul Barry, Sep 23 2005
Apparently the Motzkin transform of (0 followed by A128588). - R. J. Mathar, Dec 11 2008
Inverse binomial transform of A026671. - Philippe Deléham, Feb 11 2009
Hankel transform is 2^n. - Paul Barry, Mar 02 2010

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Sqrt[1-2*x-3*x^2]-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C((j-1)/2, (j-k)/2)*2^(j-k)*(1+(-1)^(j-k))/2.
a(n) = Sum_{k=0..n} F(k+1)*Sum_{i=0..floor((n-k)/2)} C(n, i)*C(n-i, i+k)/(i+k+1). - Paul Barry, Sep 23 2005
G.f.: M(x)^2/(2*M(x)-M(x)^2), where M(x) is the g.f. of the Motzkin numbers A001006. - Paul Barry, Feb 03 2006
G.f.: 1/(1-2x/(1-x/(1-x^2/(1-x/(1-x/91-x^2/(1-x/(1-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Mar 02 2010
D-finite with recurrence: n*a(n) + (-4*n+3)*a(n-1) + 3*(-n+1)*a(n-2) + 2*(7*n-15)*a(n-3) + 12*(n-3)*a(n-4) = 0. - R. J. Mathar, Nov 15 2012
a(n) ~ (1+sqrt(5))^n / sqrt(5). - Vaclav Kotesovec, Feb 08 2014