This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A111995 #25 Sep 07 2024 03:22:13 %S A111995 1,7,42,238,1316,7196,39158,212738,1155889,6287015,34249404,186920468, %T A111995 1022134288,5600420336,30745867316,169116129308,931937277257, %U A111995 5144687596447,28449040406262,157571572143538,874089046798212 %N A111995 Seventh convolution of Schroeder's (second problem) numbers A001003(n), n >= 0. %H A111995 Vincenzo Librandi, <a href="/A111995/b111995.txt">Table of n, a(n) for n = 0..300</a> %F A111995 G.f.: ((1+x-sqrt(1-6*x+x^2))/(4*x))^7. %F A111995 a(n) = (7/n)*Sum_{k=1..n} binomial(n,k)*binomial(n+k+6,k-1). %F A111995 a(n) = 7*hypergeom([1-n, n+8], [2], -1), n >= 1, a(0)=1. %F A111995 a(n) = fourth binomial transform of 1,3,2,6,4,12. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009 %F A111995 Recurrence: n*(n+7)*a(n) = (7*n^2+37*n+12)*a(n-1) - (7*n^2+19*n-24)*a(n-2) + (n-3)*(n+4)*a(n-3). - _Vaclav Kotesovec_, Oct 18 2012 %F A111995 a(n) ~ 7*sqrt(3*sqrt(2)-4)*(99-70*sqrt(2)) * (3+2*sqrt(2))^(n+7)/(32*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 18 2012 %t A111995 CoefficientList[Series[((1+x-Sqrt[1-6*x+x^2])/(4*x))^7, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 18 2012 *) %o A111995 (PARI) my(x='x+O('x^50)); Vec(((1+x-sqrt(1-6*x+x^2))/(4*x))^7) \\ _G. C. Greubel_, Mar 16 2017 %Y A111995 Cf. Seventh column of convolution triangle A011117. %K A111995 nonn,easy %O A111995 0,2 %A A111995 _Wolfdieter Lang_, Sep 12 2005 %E A111995 Incorrect formula removed by _Jason Yuen_, Sep 07 2024