cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112007 Coefficient triangle for polynomials used for o.g.f.s for unsigned Stirling1 diagonals.

This page as a plain text file.
%I A112007 #63 Jan 21 2025 02:27:51
%S A112007 1,2,1,6,8,1,24,58,22,1,120,444,328,52,1,720,3708,4400,1452,114,1,
%T A112007 5040,33984,58140,32120,5610,240,1,40320,341136,785304,644020,195800,
%U A112007 19950,494,1,362880,3733920,11026296,12440064,5765500,1062500,67260,1004,1
%N A112007 Coefficient triangle for polynomials used for o.g.f.s for unsigned Stirling1 diagonals.
%C A112007 This is the row reversed second-order Eulerian triangle A008517(k+1,k+1-m). For references see A008517.
%C A112007 The o.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| is G1(1,x)=1/(1-x) if k=1 and G1(k,x) = g1(k-2,x)/(1-x)^(2*k-1), if k >= 2, with the row polynomials g1(k;x):=Sum_{m=0..k} a(k,m)*x^m.
%C A112007 The recurrence eq. for the row polynomials is g1(k,x)=((k+1)+k*x)*g1(k-1,x) + x*(1-x)*(d/dx)g1(k-1,x), k >= 1, with input g1(0,x):=1.
%C A112007 The column sequences start with A000142 (factorials), A002538, A002539, A112008, A112485.
%C A112007 This o.g.f. computation was inspired by Bender et al. article where the Stirling polynomials have been rediscussed.
%C A112007 The A163936 triangle is identical to the triangle given above except for an extra right hand column [1, 0, 0, 0, ... ]. The A163936 triangle is related to the higher order exponential integrals E(x,m,n), see A163931 and A163932. - _Johannes W. Meijer_, Oct 16 2009
%H A112007 Robert Israel, <a href="/A112007/b112007.txt">Table of n, a(n) for n = 0..10010</a> (rows 0 to 140, flattened)
%H A112007 Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x))</a>
%H A112007 C. M. Bender, D. C. Brody and B. K. Meister, <a href="https://arxiv.org/abs/math-ph/0509008">Bernoulli-like polynomials associated with Stirling Numbers</a>, arXiv:math-ph/0509008 [math-ph], 2005.
%H A112007 E. Burlachenko, <a href="https://arxiv.org/abs/1907.12272">Composition polynomials of the RNA matrix and B-composition polynomials of the Riordan pseudo-involution</a>, arXiv:1907.12272 [math.NT], 2019.
%H A112007 Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/12/21/generators-inversion-and-matrix-binomial-and-integral-transforms/">Generators, Inversion, and Matrix, Binomial, and Integral Transforms</a>
%H A112007 Wolfdieter Lang, <a href="/A112007/a112007.txt">First 10 rows.</a>
%H A112007 Wolfdieter Lang, <a href="https://arxiv.org/abs/1708.01421">On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], August 2017.
%H A112007 R. Paris, <a href="http://dx.doi.org/10.1016/S0377-0427(02)00553-8">A uniform asymptotic expansion for the incomplete gamma function</a>, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239. See 234. [_Tom Copeland_, Jan 03 2016]
%H A112007 Andrew Elvey Price, Alan D. Sokal, <a href="https://arxiv.org/abs/2001.01468">Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials</a>, arXiv:2001.01468 [math.CO], 2020.
%F A112007 a(k, m) = (k+m+1)*a(k-1, m) + (k-m+1)*a(k-1, m-1), if k >= m >= 0, a(0, 0)=1; a(k, -1):=0, otherwise 0.
%F A112007 a(k,m) = Sum_{n=0..m} (-1)^(k+n+1)*C(2*k+3,n)*Stirling1(m+k-n+2,m+1-n). - _Johannes W. Meijer_, Oct 16 2009
%F A112007 The compositional inverse (with respect to x) of y = y(t,x) = (x+t*log(1-x)) is  x = x(t,y) = 1/(1-t)*y + t/(1-t)^3*y^2/2! + (2*t+t^2)/(1-t)^5*y^3/3! + (6*t+8*t^2+t^3)/(1-t)^7*y^4/4! + .... The numerator polynomials of the rational functions in t are the row polynomials of this triangle. As observed above, the rational functions in t are the generating functions for the diagonals of |A008275|. See the Bala link for a proof. Cf. A008517. - _Peter Bala_, Dec 02 2011
%e A112007 Triangle begins:
%e A112007     1;
%e A112007     2,   1;
%e A112007     6,   8,   1;
%e A112007    24,  58,  22,   1;
%e A112007   120, 444, 328,  52,   1;
%e A112007   ...
%e A112007 G.f. for k=3 sequence A000914(n-1), [2,11,35,85,175,322,546,...], is G1(3,x)= g1(1,x)/(1-x)^5= (2+x)/(1-x)^5.
%p A112007 a:= proc(k,m) option remember; if m >= 0 and k >= 0 then (k+m+1)*procname(k-1,m)+(k-m+1)*procname(k-1,m-1) else 0 fi end proc:
%p A112007 a(0,0):= 1:
%p A112007 seq(seq(a(k,m),m=0..k),k=0..10); # _Robert Israel_, Jul 20 2017
%t A112007 a[k_, m_] = Sum[(-1)^(k + n + 1)*Binomial[2k + 3, n]*StirlingS1[m + k - n + 2, m + 1 - n], {n, 0, m}]; Flatten[Table[a[k, m], {k, 0, 8}, {m, 0, k}]][[1 ;; 45]] (* _Jean-François Alcover_, Jun 01 2011, after _Johannes W. Meijer_ *)
%o A112007 (PARI) a(k, m)=sum(n=0, m, (-1)^(k + n + 1)*binomial(2*k + 3, n)*stirling(m + k - n + 2, m + 1 - n, 1));
%o A112007 for(k=0, 10, for(m=0, k, print1(a(k, m),", "))) \\ _Indranil Ghosh_, Jul 21 2017
%Y A112007 Row sums give A001147(k+1) = (2*k+1)!!, k>=0.
%K A112007 nonn,easy,tabl
%O A112007 0,2
%A A112007 _Wolfdieter Lang_, Sep 12 2005