cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112009 Numbers n with even length such that phi(n)=d_1^d_2*d_3^d_4*...* d_(k-1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.

This page as a plain text file.
%I A112009 #7 May 01 2013 21:06:45
%S A112009 113724,116680,126620,176453,236520,12146841,12514635,13334445,
%T A112009 13469331,13813728,16473510,18259344,20116537,20119347,21324832,
%U A112009 23336066,27923616,30352728,34425425,35424571,36311184,37837170,39171345,43362816,45429360,45449216,45916416,46544032,50713684,50816880,61642672,62193744,62226711,62263890,62288272,64245272,64808352,64832560,66707233,66807126,66827180,81913446,84943040
%N A112009 Numbers n with even length such that phi(n)=d_1^d_2*d_3^d_4*...* d_(k-1)^d_k where d_1 d_2 ... d_k is the decimal expansion of n.
%e A112009 27923616 is in the sequence because phi(27923616)=2^7*9^2*3^6*1^6.
%e A112009 11600069 and 23635500 are not members, since 0^0 is undefined.
%t A112009 Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]==Product[ h[[2j-1]]^h[[2j]], {j, k/2}], Print[n]], {n, 30000000}]
%Y A112009 Cf. A110084, A112010, A112011.
%K A112009 base,nonn
%O A112009 1,1
%A A112009 _Farideh Firoozbakht_, Aug 26 2005
%E A112009 Edited by _N. J. A. Sloane_, Apr 02 2009
%E A112009 More terms from _Max Alekseyev_, Oct 16 2012