This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112010 #17 Jun 08 2025 15:18:24 %S A112010 24,1064,2592,6520,106434,145166,237165,262535,372780,491520,531765, %T A112010 546410,566250,636352,12716544,12806910,13666320,15116832,15408692, %U A112010 17473715,21645616,23473515,23726640,23728264,26722436,26757024,27933192,30537364,30869280,32118177,33452293,34114338,39602752,42262365,44373490 %N A112010 Numbers m with even length such that phi(m)=phi(d_1^d_2*d_3^d_4*...* d_(k-1)^d_k) where d_1 d_2 ... d_k is the decimal expansion of m. %e A112010 33452293 is in the sequence because phi(33452293)=phi(3^3*4^5*2^2*9^3). %t A112010 Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]==EulerPhi [Product[h[[2j-1]]^h[[2j]], {j, k/2}]], Print[n]], {n, 31000000}] %t A112010 epQ[n_]:=Module[{idn=IntegerDigits[n]},EvenQ[Length[idn]]&& FreeQ[ Take[ idn, {1,-1,2}],0] && EulerPhi[n] == EulerPhi[Times@@(#[[1]]^#[[2]]&/@ Partition[ idn,2])]]; Join[Select[Range[10,99],epQ],Select[Range[ 1000,9999], epQ], Select[Range[100000,999999],epQ], Select[Range[ 10000000, 44999999], epQ]] (* _Harvey P. Dale_, Feb 24 2016 *) %Y A112010 Cf. A110084, A112009, A112011. %K A112010 base,nonn %O A112010 1,1 %A A112010 _Farideh Firoozbakht_, Aug 26 2005 %E A112010 More terms from _Max Alekseyev_, Oct 16 2012