cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112011 Numbers n with even length such that phi(n)=phi(d_1^d_2)*phi(d_3^d_4) *...*phi(d_(k-1)^d_k) where d_1 d_2 ... d_k is the decimal expansion of n.

This page as a plain text file.
%I A112011 #3 Mar 30 2012 17:37:43
%S A112011 24,1064,2592,6520,9234,145166,245344,296480,372780,491520,531765,
%T A112011 546410,566250,664062,12806910,12826710,14466530,15408692,15621268,
%U A112011 17473715,19946352,22297520,23256720,30537364,30869280,32118177
%N A112011 Numbers n with even length such that phi(n)=phi(d_1^d_2)*phi(d_3^d_4) *...*phi(d_(k-1)^d_k) where d_1 d_2 ... d_k is the decimal expansion of n.
%C A112011 For the third term we have the relation 2592=2^5*9^2. So phi(2592)=phi(2^5*9^2)=phi(2^5)*phi(9^2).
%e A112011 39602752 is in the sequence because phi(39602752)=
%e A112011 phi(3^9)*phi(6^0)*phi(2^7)*phi(5^2).
%t A112011 Do[h = IntegerDigits[n]; k = Length[h]; If[EvenQ[k] && Select[ Range[k/2], h[[2#-1]] == 0 &] == {} && EulerPhi[n]== Product[EulerPhi[h[[2j-1]]^h[[2j]]], {j, k/2}], Print[n]], {n, 35000000}]
%Y A112011 Cf. A110084, A112009, A112010.
%K A112011 base,nonn
%O A112011 1,1
%A A112011 _Farideh Firoozbakht_, Aug 26 2005