This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112020 #22 Mar 19 2024 09:13:32 %S A112020 1,0,0,0,1,0,1,0,0,1,2,0,0,1,2,2,1,0,1,3,2,2,1,2,3,5,2,2,3,5,4,5,3,4, %T A112020 6,9,6,5,6,10,10,9,7,9,12,14,12,11,14,18,17,16,16,19,21,24,21,23,26, %U A112020 29,30,32,31,33,39,40,39,41,45,49,54,53,54,59,68,66,68,70,78,82,88,86,93,101 %N A112020 Number of partitions of n into distinct semiprimes. %H A112020 Alois P. Heinz, <a href="/A112020/b112020.txt">Table of n, a(n) for n = 0..10000</a> %e A112020 For n=4 one partition: {2*2}. %e A112020 For n=6 one partition: {2*3}. %e A112020 For n=10 two partitions: {2*2+2*3,2*5}. %p A112020 h:= proc(n) option remember; `if`(n=0, 0, %p A112020 `if`(numtheory[bigomega](n)=2, n, h(n-1))) %p A112020 end: %p A112020 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A112020 b(n-i, h(min(n-i, i-1)))+b(n, h(i-1)))) %p A112020 end: %p A112020 a:= n-> b(n, h(n)): %p A112020 seq(a(n), n=0..100); # _Alois P. Heinz_, Mar 19 2024 %t A112020 nmax = 100; %t A112020 CoefficientList[Series[Product[1+x^(Prime[j] Prime[k]), {j, 1, nmax}, {k, j, nmax}], {x, 0, nmax}], x] (* _Jean-François Alcover_, Nov 10 2021 *) %Y A112020 Cf. A101048, A112022, A001358, A000586. %K A112020 nonn %O A112020 0,11 %A A112020 _Reinhard Zumkeller_, Aug 26 2005