This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112103 #23 Jan 05 2025 19:51:38 %S A112103 1,2,48,2160,120960,3024000,99792000,63567504000,46230912000, %T A112103 77806624896000,4548694993920,7155097225436160,164567236185031680, %U A112103 139059314576351769600,139059314576351769600,100818003067855032960000,25002864760828048174080000 %N A112103 Denominator of Sum_{i=1..n} 1/(i^3*C(2*i,i)). %H A112103 Robert Israel, <a href="/A112103/b112103.txt">Table of n, a(n) for n = 0..576</a> %H A112103 C. Elsner, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/43-1/paper43-1-5.pdf">On recurrence formulas for sums involving binomial coefficients</a>, Fib. Q., 43,1 (2005), 31-45. %e A112103 0, 1/2, 25/48, 1129/2160, 63251/120960, 1581371/3024000, 52185743/99792000, ... -> Pi^2/18. %p A112103 f:= proc(n) local i; denom(add(1/(i^3*binomial(2*i,i)),i=1..n)) end proc: %p A112103 map(f, [$0..20]); # _Robert Israel_, Jun 22 2023 %t A112103 Table[Sum[1/(k^3 Binomial[2k,k]),{k,n}],{n,0,20}]//Denominator (* _Harvey P. Dale_, Feb 19 2023 *) %o A112103 (PARI) a(n) = denominator(sum(i=1, n, 1/(i^3*binomial(2*i, i)))); \\ _Michel Marcus_, Mar 10 2016 %Y A112103 Cf. A086463 (Pi^2/18), A112102 (numerator). %K A112103 nonn,frac %O A112103 0,2 %A A112103 _N. J. A. Sloane_, Nov 30 2005 %E A112103 Definition corrected (and an incorrect sum deleted) by _Wolfdieter Lang_, Oct 07 2008