This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112110 #10 Oct 08 2018 18:35:45 %S A112110 1,5,5,5,5,5,4,4,4,4,3,1,1,1,5,3,1,1,5,3,4,3,2,1,5,4,1,4,1,5,1,4,5,4, %T A112110 2,1,5,2,5,4,5,5,4,1,1,5,4,3,5,1,5,2,2,3,1,3,2,5,2,5,3,2,3,5,2,1,2,3, %U A112110 1,5,1,4,5,4,3,3,2,4,2,3,4,5,2,5,5,2,4,2,3,5,3,2,4,2,2,1,1,2,3,4,5,3,3,1,5 %N A112110 Unique sequence of numbers {1,2,3,4,5} where g.f. A(x) satisfies A(x) = B(B(B(B(B(x))))) (5th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0. %e A112110 G.f.: A(x) = x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 + ... %e A112110 then A(x) = B(B(B(B(B(x))))) where %e A112110 B(x) = x + x^2 - 3*x^3 + 17*x^4 - 115*x^5 + 841*x^6 + ... %e A112110 is the g.f. of A112111. %o A112110 (PARI) {a(n,m=5)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))} %Y A112110 Cf. A112111, A112104-A112109, A112112-A112127. %K A112110 nonn %O A112110 1,2 %A A112110 _Paul D. Hanna_, Aug 27 2005