cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112112 Unique sequence of numbers {1,2,3,...,6} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (6th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.

This page as a plain text file.
%I A112112 #11 Oct 08 2018 18:35:26
%S A112112 1,6,6,3,4,4,6,2,5,3,3,5,3,2,5,3,3,4,5,4,3,2,6,4,3,6,2,5,6,4,2,5,4,5,
%T A112112 1,1,1,4,4,2,3,6,6,5,5,4,3,5,5,2,2,1,3,6,1,5,2,6,5,4,3,4,6,6,5,5,6,1,
%U A112112 5,6,6,3,3,1,5,4,5,1,5,2,2,4,3,4,2,1,6,1,3,2,4,1,3,5,3,1,3,2,6,2,5,1,3,6,2
%N A112112 Unique sequence of numbers {1,2,3,...,6} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (6th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.
%e A112112 G.f.: Let A(x) = x + 6*x^2 + 6*x^3 + 3*x^4 + 4*x^5 + 4*x^6 + ...
%e A112112 then A(x) = B(B(B(B(B(B(x)))))) where B(x) = x + x^2 - 4*x^3 + 28*x^4 - 236*x^5 + 2159*x^6 + ... is the g.f. of A112113.
%o A112112 (PARI) {a(n,m=6)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))}
%Y A112112 Cf. A112113, A112104-A112111, A112114-A112127.
%K A112112 nonn
%O A112112 1,2
%A A112112 _Paul D. Hanna_, Aug 27 2005