This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112116 #6 Mar 12 2015 19:56:05 %S A112116 1,8,8,4,8,4,8,8,4,8,8,4,4,8,8,4,4,8,8,2,4,6,4,6,2,4,8,8,2,2,8,4,8,2, %T A112116 2,8,8,6,4,4,6,2,4,3,8,5,8,8,7,5,4,3,4,6,6,2,1,7,2,7,8,8,8,2,8,8,4,2, %U A112116 7,8,8,5,3,4,2,6,5,1,8,7,4,1,5,4,4,7,4,2,4,7,6,4,6,2,6,3,5,6,7,2,5,7,8,8,7 %N A112116 Unique sequence of numbers {1,2,3,...,8} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (8th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0. %e A112116 G.f.: A(x) = x + 8*x^2 + 8*x^3 + 4*x^4 + 8*x^5 + 4*x^6 + 8*x^7 +... %e A112116 then A(x) = B(B(B(B(B(B(B(B(x)))))))) where %e A112116 B(x) = x + x^2 - 6*x^3 + 60*x^4 - 720*x^5 + 9398*x^6 - 126958*x^7 +... %e A112116 is the g.f. of A112117. %o A112116 (PARI) {a(n,m=8)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))} %Y A112116 Cf. A112117, A112104-A112115, A112118-A112127. %K A112116 nonn %O A112116 1,2 %A A112116 _Paul D. Hanna_, Aug 27 2005