This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112122 #6 Mar 14 2015 00:56:09 %S A112122 1,11,11,11,11,11,11,11,11,11,11,11,10,10,10,10,10,10,10,10,10,10,9,7, %T A112122 7,7,7,7,7,7,7,7,6,10,11,11,11,11,11,11,11,11,10,2,7,1,1,1,1,1,1,1,11, %U A112122 1,10,1,3,3,3,3,3,3,2,2,10,11,11,3,3,3,3,3,2,6,9,5,3,2,4,4,4,4,3,5,11,6,7 %N A112122 Unique sequence of numbers {1,2,3,...,11} where g.f. A(x) satisfies A(x) = B(B(B(..(B(x))..))) (11th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0. %e A112122 G.f.: A(x) = x + 11*x^2 + 11*x^3 + 11*x^4 + 11*x^5 +... %e A112122 then A(x) = B(B(B(B(B(B(B(B(B(B(B(x))))))))))) where %e A112122 B(x) = x + x^2 - 9*x^3 + 131*x^4 - 2279*x^5 + 43161*x^6 +... %e A112122 is the g.f. of A112123. %o A112122 (PARI) {a(n,m=11)=local(F=x+x^2+x*O(x^n),G);if(n<1,0, for(k=3,n, G=F+x*O(x^k);for(i=1,m-1,G=subst(F,x,G)); F=F-((polcoeff(G,k)-1)\m)*x^k); G=F+x*O(x^n);for(i=1,m-1,G=subst(F,x,G)); return(polcoeff(G,n,x)))} %Y A112122 Cf. A112123, A112104-A112121, A112124-A112127. %K A112122 nonn %O A112122 1,2 %A A112122 _Paul D. Hanna_, Aug 27 2005