This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112141 #30 Aug 31 2021 21:21:37 %S A112141 4,24,216,2160,30240,453600,9525600,209563200,5239080000,136216080000, %T A112141 4495130640000,152834441760000,5349205461600000,203269807540800000, %U A112141 7927522494091200000,364666034728195200000,17868635701681564800000,911300420785759804800000 %N A112141 Product of the first n semiprimes. %C A112141 Semiprime analog of primorial (A002110). Equivalent for product of what A062198 is for sum. %H A112141 T. D. Noe, <a href="/A112141/b112141.txt">Table of n, a(n) for n = 1..100</a> %F A112141 a(n) = Product_{i=1..n} A001358(i). %F A112141 A001222(a(n)) = 2*n. %e A112141 a(10) = 4*6*9*10*14*15*21*22*25*26 = 136216080000, the product of the first 10 semiprimes. %e A112141 From _Gus Wiseman_, Dec 06 2020: (Start) %e A112141 The sequence of terms together with their prime signatures begins: %e A112141 4: (2) %e A112141 24: (3,1) %e A112141 216: (3,3) %e A112141 2160: (4,3,1) %e A112141 30240: (5,3,1,1) %e A112141 453600: (5,4,2,1) %e A112141 9525600: (5,5,2,2) %e A112141 209563200: (6,5,2,2,1) %e A112141 5239080000: (6,5,4,2,1) %e A112141 136216080000: (7,5,4,2,1,1) %e A112141 4495130640000: (7,6,4,2,2,1) %e A112141 152834441760000: (8,6,4,2,2,1,1) %e A112141 5349205461600000: (8,6,5,3,2,1,1) %e A112141 203269807540800000: (9,6,5,3,2,1,1,1) %e A112141 7927522494091200000: (9,7,5,3,2,2,1,1) %e A112141 364666034728195200000: (10,7,5,3,2,2,1,1,1) %e A112141 17868635701681564800000: (10,7,5,5,2,2,1,1,1) %e A112141 (End) %p A112141 A112141 := proc(n) %p A112141 mul(A001358(i),i=1..n) ; %p A112141 end proc: %p A112141 seq(A112141(n),n=1..10) ; # _R. J. Mathar_, Jun 30 2020 %t A112141 NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := Times @@ NestList[ NextSemiPrime@# &, 2^2, n - 1]; Array[f, 18] (* _Robert G. Wilson v_, Jun 13 2013 *) %t A112141 FoldList[Times,Select[Range[30],PrimeOmega[#]==2&]] (* _Gus Wiseman_, Dec 06 2020 *) %o A112141 (PARI) a(n)=my(v=vector(n),i,k=3);while(i<n,if(bigomega(k++)==2,v[i++]=k)); prod(i=1,n,v[i]) \\ _Charles R Greathouse IV_, Apr 04 2013 %o A112141 (Python) %o A112141 from sympy import factorint %o A112141 def aupton(terms): %o A112141 alst, k, p = [], 1, 1 %o A112141 while len(alst) < terms: %o A112141 if sum(factorint(k).values()) == 2: %o A112141 p *= k %o A112141 alst.append(p) %o A112141 k += 1 %o A112141 return alst %o A112141 print(aupton(18)) # _Michael S. Branicky_, Aug 31 2021 %Y A112141 Partial sums of semiprimes are A062198. %Y A112141 First differences of semiprimes are A065516. %Y A112141 A000040 lists primes, with partial products A002110 (primorials). %Y A112141 A000142 lists factorials, with partial products A000178 (superfactorials). %Y A112141 A001358 lists semiprimes, with partial products A112141 (this sequence). %Y A112141 A005117 lists squarefree numbers, with partial products A111059. %Y A112141 A006881 lists squarefree semiprimes, with partial products A339191. %Y A112141 A101048 counts partitions into semiprimes (restricted: A338902). %Y A112141 A320655 counts factorizations into semiprimes. %Y A112141 A338898/A338912/A338913 give the prime indices of semiprimes, with product/sum/difference A087794/A176504/A176506. %Y A112141 A338899/A270650/A270652 give the prime indices of squarefree semiprimes, with product/sum/difference A339361/A339362/A338900. %Y A112141 Cf. A001222, A084126, A084127, A115392, A168472, A320732, A320892. %K A112141 easy,nonn %O A112141 1,1 %A A112141 _Jonathan Vos Post_, Nov 28 2005