This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112227 #11 Jul 20 2019 08:02:58 %S A112227 1,0,1,-2,0,1,0,-6,0,1,12,0,-12,0,1,0,60,0,-20,0,1,-120,0,180,0,-30,0, %T A112227 1,0,-840,0,420,0,-42,0,1,1680,0,-3360,0,840,0,-56,0,1,0,15120,0, %U A112227 -10080,0,1512,0,-72,0,1,-30240,0,75600,0,-25200,0,2520,0,-90,0,1,0,-332640,0,277200,0,-55440,0,3960,0,-110,0,1,665280,0 %N A112227 A scaled Hermite triangle. %C A112227 Inverse of number triangle A067147. Diagonal sums are A002119. %H A112227 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a> %F A112227 Number triangle T(n, k)=A060821(n, k)/2^k; T(n, k)=n!/(k!*2^((n-k)/2)((n-k)/2)!)*cos(pi*(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1) T(n, k)=A001498((n+k)/2, (n-k)/2)*cos(pi(n-k)/2)*2^((n+k)/2)(1+(-1)^(n+k))/2^(k+1); %F A112227 Exponential Riordan array (e^(-x^2),x). - _Paul Barry_, Sep 12 2006 %e A112227 Triangle begins %e A112227 1; %e A112227 0,1; %e A112227 -2,0,1; %e A112227 0,-6,0,1; %e A112227 12,0,-12,0,1; %e A112227 0,60,0,-20,0,1; %t A112227 (* The function RiordanArray is defined in A256893. *) %t A112227 rows = 12; %t A112227 R = RiordanArray[E^(-#^2)&, #&, rows, True]; %t A112227 R // Flatten %K A112227 easy,sign,tabl %O A112227 0,4 %A A112227 _Paul Barry_, Aug 28 2005