cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112264 Sum of initial digits of prime factors (with multiplicity) of n.

This page as a plain text file.
%I A112264 #19 Feb 16 2025 08:32:59
%S A112264 0,2,3,4,5,5,7,6,6,7,1,7,1,9,8,8,1,8,1,9,10,3,2,9,10,3,9,11,2,10,3,10,
%T A112264 4,3,12,10,3,3,4,11,4,12,4,5,11,4,4,11,14,12,4,5,5,11,6,13,4,4,5,12,6,
%U A112264 5,13,12,6,6,6,5,5,14,7,12,7,5,13,5,8,6,7,13,12,6,8,14,6,6,5,7,8,13,8,6,6,6
%N A112264 Sum of initial digits of prime factors (with multiplicity) of n.
%C A112264 For primes p, elements of A000040, a(p) = A000030(p). The cumulative sum of this sequence is A112265. Primes in the cumulative sum are A112266. This is a base 10 sequence, the base 1 equivalent is A001222(n) = BigOmega(n) = e_1 + e_2 + ... + e_k, the number of prime factors (with multiplicity), where k = A001221(n) = SmallOmega(n). The base 2 equivalent is equal to the base 1 equivalent.
%H A112264 G. C. Greubel, <a href="/A112264/b112264.txt">Table of n, a(n) for n = 1..1000</a>
%H A112264 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>
%H A112264 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>
%F A112264 a(1) = 0 and given the prime factorization n = (p_1)^(e_1) * (p_2)^(e_2) * ... * (p_k)^(e_k) then a(n) = (e_1)*A000030(p_1) + (e_2)*A000030(p_2) + ... + (e_k)*A000030(p_l).
%e A112264 a(4) = 4 because 4 = 2*2, so the sum of the initial digits is 2 + 2 = 4.
%e A112264 a(11) = 1 because 11 is prime and its initial digit is 1.
%e A112264 a(22) = 3 because 22 = 2*11, so the sum of the initial digits is 2 + 1 = 3.
%e A112264 a(98) = 16 because 98 = 2 * 7^2, so the sum of the initial digits is 2 + 7 + 7 = 16.
%e A112264 a(100) = 14 because 100 = 2^2 * 5^2, so the sum of the initial digits is 2 + 2 + 5 + 5 = 14.
%e A112264 a(121) = 2 because 121 = 11^2, so the sum of the initial digits is 1 + 1 = 2.
%e A112264 a(361) = 2 because 361 = 19^2, so the sum of the initial digits is 1 + 1 = 2.
%t A112264 f[1] = 0; f[n_] := Plus @@ (#[[2]] First@IntegerDigits[#[[1]]] & /@ FactorInteger[n]); Array[f, 94] (* _Giovanni Resta_, Jun 17 2016 *)
%Y A112264 Cf. A000030, A000040, A001221, A001222, A112266.
%K A112264 base,easy,nonn
%O A112264 1,2
%A A112264 _Jonathan Vos Post_, Aug 30 2005
%E A112264 a(6) and a(35) corrected by _Giovanni Resta_, Jun 17 2016