cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112288 Numerator of sum{k=1 to n} 1/s(n,k), where s(n,k) is an unsigned Stirling number of the first kind.

This page as a plain text file.
%I A112288 #16 Aug 17 2019 03:26:14
%S A112288 1,2,11,47,4999,4589867,1802849,80995354865,10388318700333839827,
%T A112288 129530631982136545940863,460116344514106299899953231,
%U A112288 1272711183040784735474188752842879054737
%N A112288 Numerator of sum{k=1 to n} 1/s(n,k), where s(n,k) is an unsigned Stirling number of the first kind.
%C A112288 4 consecutive values are primes: 2, 11, 47, 4999. - _Jonathan Vos Post_, Sep 08 2005
%e A112288 a(4) = 47, the numerator of 1/6 + 1/11 + 1/6 + 1 = 47/33.
%e A112288 The first few fractions are: 1, 2, 11/6, 47/33, 4999/4200.
%p A112288 a := n -> numer(add(1/abs(Stirling1(n,k)), k=1..n)): seq(a(n),n=1..14); # _Emeric Deutsch_, Sep 02 2005
%t A112288 f[n_] := Sum[1/Abs[StirlingS1[n, k]], {k, n}]; Table[Numerator[f[n]], {n, 15}] (* _Ray Chandler_, Sep 02 2005 *)
%o A112288 (PARI) a(n) = numerator(sum(k=1, n, 1/abs(stirling(n,k,1)))); \\ _Michel Marcus_, Aug 17 2019
%Y A112288 Cf. A112289.
%K A112288 nonn,frac
%O A112288 1,2
%A A112288 _Leroy Quet_, Sep 01 2005
%E A112288 Extended by _Emeric Deutsch_ and _Ray Chandler_, Sep 02 2005