cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112290 Numerator of sum{k=1 to n} 1/S(n,k), where S(n,k) is a Stirling number of the second kind.

This page as a plain text file.
%I A112290 #16 Jun 03 2022 01:27:35
%S A112290 1,2,7,97,331,77089,562609,19352053463,6781959158383,
%T A112290 4060488497950626661,2877117441205884350399,
%U A112290 7936150834464388482084637351,21924183158935156780838459
%N A112290 Numerator of sum{k=1 to n} 1/S(n,k), where S(n,k) is a Stirling number of the second kind.
%C A112290 Conjecture: a(n)/A112291(n) tends to 2 as n tends to infinity. - _Vaclav Kotesovec_, Jun 02 2022
%H A112290 Vaclav Kotesovec, <a href="/A112290/b112290.txt">Table of n, a(n) for n = 1..49</a>
%e A112290 a(4) = 97, the numerator of 1/1 + 1/7 + 1/6 + 1 = 97/42.
%e A112290 The first few fractions are: 1, 2, 7/3, 97/42, 331/150, 77089/36270, 562609/270900,
%p A112290 with(combinat): a:=n->numer(sum(1/stirling2(n,k),k=1..n)): seq(a(n),n=1..15); # _Emeric Deutsch_, Sep 02 2005
%t A112290 f[n_] := Sum[1/StirlingS2[n, k], {k, n}]; Table[Numerator[f[n]], {n, 15}] (* _Ray Chandler_, Sep 02 2005 *)
%Y A112290 Cf. A112291.
%K A112290 nonn,frac
%O A112290 1,2
%A A112290 _Leroy Quet_, Sep 01 2005
%E A112290 Extended by _Emeric Deutsch_ and _Ray Chandler_, Sep 02 2005