A112292 An invertible triangle of ratios of double factorials.
1, 1, 1, 3, 3, 1, 15, 15, 5, 1, 105, 105, 35, 7, 1, 945, 945, 315, 63, 9, 1, 10395, 10395, 3465, 693, 99, 11, 1, 135135, 135135, 45045, 9009, 1287, 143, 13, 1, 2027025, 2027025, 675675, 135135, 19305, 2145, 195, 15, 1, 34459425, 34459425, 11486475, 2297295, 328185, 36465, 3315, 255, 17, 1
Offset: 0
Examples
Triangle begins 1; 1, 1; 3, 3, 1; 15, 15, 5, 1; 105, 105, 35, 7, 1; 945, 945, 315, 63, 9, 1; 10395, 10395, 3465,693, 99, 11, 1; Inverse is A112295, which begins 1; -1, 1; 0, -3, 1; 0, 0, -5, 1; 0, 0, 0, -7, 1; 0, 0, 0, 0, -9, 1; Similar results arise for higher factorials.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := If[k <= n, (2n-1)!!/(2k-1)!!, 0]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
Formula
T(n, k)=if(k<=n, (2n-1)!!/(2k-1)!!, 0);
T(n, k)=if(k<=n, n!*C(2n, n)2^(k-n)/(k!*C(2k, k)), 0);
T(n, k)=if(k<=n, 2^(n-k)(n-1/2)!/(k-1/2)!, 0);
T(n, k)=if(k<=n, (n+1)!*C(n)2^(k-n)/((k+1)!*C(k)), 0).
Comments