cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112293 Row sums of number triangle A112292.

Original entry on oeis.org

1, 2, 7, 36, 253, 2278, 25059, 325768, 4886521, 83070858, 1578346303, 33145272364, 762341264373, 19058531609326, 514580353451803, 14922830250102288, 462607737753170929, 15266055345854640658, 534311937104912423031
Offset: 0

Views

Author

Paul Barry, Sep 01 2005

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := If[k <= n, (2 n - 1)!! / (2 k - 1)!!, 0];
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jun 13 2019 *)

Formula

a(n) = Sum_{k=0..n} (2n-1)!!/(2k-1)!!.
a(n) = Sum_{k=0..n} 2^(n-k)(n-1/2)!/(k-1/2)!.
a(n) = Sum_{k=0..n} n!C(2n, n)2^(k-n)/(k!C(2k, k)).
a(n) = Sum_{k=0..n} (n+1)!*C(n)2^(k-n)/((k+1)!*C(k)).
Conjecture: a(n) - 2*n*a(n-1) + (2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 28 2014
a(n) = floor((2*n-1)!! * C) for n>0, where C = 1 + sqrt(e*Pi/2)*erf(1/sqrt(2)). - Don Knuth, Mar 25 2018
a(n) = 2^n*(C*Gamma(n + 1/2) + Gamma(n + 1/2, 1/2))*sqrt(e/2) for n >= 0, where C = sqrt(2/(e*Pi)) - erfc(1/sqrt(2)). - Peter Luschny, Mar 25 2018
a(n) = a(n-1) * (2*n-1) + 1 for n > 0 and a(0) = 1; that proves the conjecture of R. J. Mathar from Nov 28 2014; G.f. A(x) satisfies the equation: A(x) = 1/(1-x)^2 + A'(x) * 2*x^2/(1-x), where A' is the first derivative of A. - Werner Schulte, Oct 18 2023