cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112308 Sum of the heights of the second peaks in all Dyck paths of semilength n+2.

This page as a plain text file.
%I A112308 #16 Jul 26 2022 12:14:10
%S A112308 1,6,25,93,333,1180,4183,14895,53349,192239,696765,2539157,9299547,
%T A112308 34215102,126411177,468822297,1744799967,6514363557,24393558687,
%U A112308 91591471287,344764147407,1300756937445,4918188617379,18633066901747
%N A112308 Sum of the heights of the second peaks in all Dyck paths of semilength n+2.
%C A112308 a(n) = Sum_{k=0..n+1} k*A112307(n+2,k).
%H A112308 Vincenzo Librandi, <a href="/A112308/b112308.txt">Table of n, a(n) for n = 0..300</a>
%F A112308 G.f.: c^4*(1+z*c)/(1-z), where c=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
%F A112308 Recurrence: (n+4)*(221*n-49)*a(n) = (1105*n^2 + 2877*n + 1178)*a(n-1) - 2*(442*n^2 + 1077*n + 659)*a(n-2) + 56*(2*n-1)*a(n-3). - _Vaclav Kotesovec_, Oct 19 2012
%F A112308 D-finite with recurrence 2*(n+4)*a(n) +(-15*n-38)*a(n-1) +2*(17*n+20)*a(n-2) +(-25*n-4)*a(n-3) +2*(2*n-3)*a(n-4)=0. - _R. J. Mathar_, Jul 26 2022
%F A112308 a(n) ~ 13*2^(2*n+4)/(3*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012
%e A112308 a(1)=6 because the second peaks of the Dyck paths UDUDUD, UDUUDD, UUDDUD, UUDUDD and UUUDDD, where U=(1,1), D=(1,-1), are 1, 2, 1, 2 and 0, respectively.
%p A112308 c:=(1-sqrt(1-4*z))/2/z: g:=series(c^4*(1+z*c)/(1-z),z=0,32): 1,seq(coeff(g,z^n),n=1..27);
%t A112308 CoefficientList[Series[((1-Sqrt[1-4*x])/(2*x))^4*(1+x*(1-Sqrt[1-4*x])/(2*x))/(1-x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 19 2012 *)
%Y A112308 Cf. A112307.
%Y A112308 Partial sums of A070857.
%K A112308 nonn
%O A112308 0,2
%A A112308 _Emeric Deutsch_, Nov 30 2005