This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112309 #20 Aug 28 2025 08:20:42 %S A112309 1,2,1,2,1,3,2,3,1,2,3,2,5,1,2,5,1,3,5,2,3,5,1,2,3,5,1,3,8,2,3,8,1,2, %T A112309 3,8,2,5,8,1,2,5,8,1,3,5,8,2,3,5,8,1,2,3,5,8,2,5,13,1,2,5,13,1,3,5,13, %U A112309 2,3,5,13,1,2,3,5,13,1,3,8,13,2,3,8,13,1,2,3,8,13,2,5,8,13,1,2,5,8,13,1,3 %N A112309 Triangle read by rows: row n gives terms in lazy Fibonacci representation of n. %C A112309 Write n as a sum c_2 F_2 + c_3 F_3 + ..., where the F_i are Fibonacci numbers and the c_i are 0 or 1. The lazy expansion is the minimal one in the lexicographic order, in contrast to the Zeckendorf expansion (A035517, A007895), which is the maximal one. %C A112309 In other words we give preference to the smallest Fibonacci numbers. %H A112309 Rémy Sigrist, <a href="/A112309/b112309.txt">Table of n, a(n) for n = 1..8253</a> (rows for n = 1..985 flattened) %H A112309 Rémy Sigrist, <a href="/A112309/a112309.gp.txt">PARI program</a> %H A112309 W. Steiner, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/43-1/paper43-1-8.pdf">The joint distribution of greedy and lazy Fibonacci expansions</a>, Fib. Q., 43 (No. 1, 2005), 60-69. %e A112309 Triangle begins: %e A112309 1 meaning 1 = 1 %e A112309 2 meaning 2 = 2 %e A112309 1 2 meaning 3 = 1+2 %e A112309 1 3 meaning 4 = 1+3 %e A112309 2 3 meaning 5 = 2+3 %e A112309 1 2 3 meaning 6 = 1+2+3 (and not the Zeckendorf expansion 1+5) %e A112309 2 5 meaning 7 = 2+5 %p A112309 A112309 := proc(n) %p A112309 local z,d ; %p A112309 z := convert(A104326(n),base,10) ; %p A112309 for d from 1 to nops(z) do %p A112309 if op(d,z) > 0 then %p A112309 printf("%d,",combinat[fibonacci](d+1)) ; %p A112309 end if; %p A112309 end do: %p A112309 end proc: %p A112309 for n from 1 to 20 do %p A112309 A112309(n) ; %p A112309 end do: # _R. J. Mathar_, Aug 28 2025 %t A112309 DeleteCases[IntegerDigits[Range[200], 2], {___, 0, 0, ___}] %t A112309 A112309 = Map[DeleteCases[Reverse[#] Fibonacci[Range[Length[#]] + 1], 0] &, DeleteCases[IntegerDigits[-1 + Range[200], 2], {___, 0, 0, ___}]] %t A112309 A112310 = Map[Length, A112309] %t A112309 (* _Peter J. C. Moses_, Mar 03 2015 *) %o A112309 (PARI) See Links section. %Y A112309 Cf. A000045, A112310, A035517, A007895. %K A112309 nonn,tabf,easy,changed %O A112309 1,2 %A A112309 _N. J. A. Sloane_, Dec 01 2005 %E A112309 Extended by _Ray Chandler_, Dec 01 2005