This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112326 #7 Sep 20 2019 04:51:00 %S A112326 2,6,4,20,16,8,70,60,40,16,252,224,168,96,32,924,840,672,448,224,64, %T A112326 3432,3168,2640,1920,1152,512,128,12870,12012,10296,7920,5280,2880, %U A112326 1152,256,48620,45760,40040,32032,22880,14080,7040,2560,512,184756,175032 %N A112326 Triangle read by rows: T(n,k)=2^k*binomial(2n-k,n-k), 1<=k<=n. %C A112326 Row sums yield A068551. %C A112326 T(n,1) = binomial(2n,n) = A000984(n); T(n,n) = 2^n. %D A112326 M. Eisen, Elementary Combinatorial Analysis, Gordon and Breach, 1969 (p. 150). %H A112326 F. Ruskey, <a href="https://doi.org/10.1137/0601007">Average shape of binary trees</a>, SIAM J. Alg. Disc. Meth., 1, 1980, 43-50. %e A112326 Triangle starts: %e A112326 2; %e A112326 6,4; %e A112326 20,16,8; %e A112326 70,60,40,16; %p A112326 T:=proc(n,k) if k<=n then 2^k*binomial(2*n-k,n-k) else 0 fi end: for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form %t A112326 Flatten[Table[2^k*Binomial[2n-k,n-k],{n,1,10},{k,1,n}]] (* _Stefano Spezia_, Sep 20 2019 *) %Y A112326 Cf. A068551, A000984. %K A112326 nonn,tabl %O A112326 1,1 %A A112326 _Emeric Deutsch_, Sep 04 2005