A112333 An invertible triangle of ratios of triple factorials.
1, 2, 1, 10, 5, 1, 80, 40, 8, 1, 880, 440, 88, 11, 1, 12320, 6160, 1232, 154, 14, 1, 209440, 104720, 20944, 2618, 238, 17, 1, 4188800, 2094400, 418880, 52360, 4760, 340, 20, 1, 96342400, 48171200, 9634240, 1204280, 109480, 7820, 460, 23, 1, 2504902400
Offset: 0
Examples
Triangle begins 1; 2, 1; 10, 5, 1; 80, 40, 8, 1; 880, 440, 88, 11, 1; 12320, 6160, 1232, 154, 14, 1; Inverse triangle A112334 begins 1; -2, 1; 0, -5, 1; 0, 0, -8, 1; 0, 0, 0, -11, 1; 0, 0, 0, 0, -14, 1; 0, 0, 0, 0, 0, -17, 1;
Programs
-
Maple
nmax:=8: for n from 0 to nmax do for k from 0 to n do if k<=n then T(n, k) := mul(3*k1-1, k1=1..n)/ mul(3*j-1, j=1..k) else T(n, k) := 0: fi: od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od: seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jul 04 2011, revised Nov 23 2012
Formula
Number triangle T(n, k)=if(k<=n, Product{k=1..n, 3k-1}/Product{j=1..k, 3j-1}, 0); T(n, k)=if(k<=n, 3^(n-k)*(n-1/3)!/(k-1/3)!, 0).
Comments