cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112351 Triangle read by rows, generated from (..., 5, 3, 1).

This page as a plain text file.
%I A112351 #32 Feb 08 2024 05:28:10
%S A112351 1,1,3,1,6,5,1,9,19,7,1,12,42,44,9,1,15,74,138,85,11,1,18,115,316,363,
%T A112351 146,13,1,21,165,605,1059,819,231,15,1,24,224,1032,2470,2984,1652,344,
%U A112351 17,1,27,292,1624,4974,8378,7380,3060
%N A112351 Triangle read by rows, generated from (..., 5, 3, 1).
%C A112351 A039755 (Analogs of a Stirling number of the second kind triangle) is generated through an analogous set of operations (but using the matrix M = [1 / 1 3 / 1 3 5 /...]). First few rows of the array are 1, 3, 5, 7, 9, 11, ...; 1, 6, 19, 44, 85, ...; 1, 9, 42, 138, 363, ...; 1, 12, 74, 316, 1059, ....
%C A112351 A112351 is jointly generated with A209414 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = 2x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica and Example sections. - _Clark Kimberling_, Mar 09 2012
%C A112351 Subtriangle of the triangle T(n,k) given by (1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 12 2012
%F A112351 Let M = an infinite lower triangular matrix of the form [1 / 3 1 / 5 3 1 / ...] (with the rest of the terms zeros). Perform M^n * [1 0 0 0 ...] forming an array. Antidiagonals of the array become rows of the triangle A112351.
%F A112351 From _Philippe Deléham_, Mar 12 2012: (Start)
%F A112351 As DELTA-triangle T(n,k) with 0 <= k <= n:
%F A112351 T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,1) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n.
%F A112351 G.f.: (1-y*x)^2/(1-x-2*y*x-y*x^2+y^2*x^2). (End)
%e A112351 The antidiagonal 1 9 19 7 of the array becomes row 3 of the triangle.
%e A112351 From _Clark Kimberling_, Mar 09 2012: (Start)
%e A112351 When jointly generated with A209414, the format as a triangle has the following first five rows:
%e A112351   1;
%e A112351   1,  3;
%e A112351   1,  6,  5;
%e A112351   1,  9, 19,   7;
%e A112351   1, 12, 42,  44,  9;
%e A112351   1, 15, 74, 138, 85, 11;
%e A112351 The corresponding first five polynomials are
%e A112351   1,
%e A112351   1 + 3x,
%e A112351   1 + 6x + 5x^2,
%e A112351   1 + 9x + 19x^2 + 7x^3,
%e A112351   1 + 12x + 42x^2 + 44x^3 + 9x^4. (End)
%e A112351 (1, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, ...) begins:
%e A112351   1;
%e A112351   1,  0;
%e A112351   1,  3,   0;
%e A112351   1,  6,   5,   0;
%e A112351   1,  9,  19,   7,   0;
%e A112351   1, 12,  42,  44,   9,   0;
%e A112351   1, 15,  74, 138,  85,  11,  0;
%e A112351   1, 18, 115, 316, 363, 146, 13, 0;
%e A112351 - _Philippe Deléham_, Mar 12 2012
%t A112351 u[1, x_] := 1; v[1, x_] := 1; z = 16;
%t A112351 u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
%t A112351 v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
%t A112351 Table[Expand[u[n, x]], {n, 1, z/2}]
%t A112351 Table[Expand[v[n, x]], {n, 1, z/2}]
%t A112351 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
%t A112351 TableForm[cu]
%t A112351 Flatten[%]    (* A209414 *)
%t A112351 Table[Expand[v[n, x]], {n, 1, z}]
%t A112351 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
%t A112351 TableForm[cv]
%t A112351 Flatten[%]    (* A112351 *)
%t A112351 (* _Clark Kimberling_, Mar 09 2012 *)
%Y A112351 Cf. A039755, A005900 (array row 2), A061927 (array row 3), A209414.
%K A112351 nonn,tabl
%O A112351 0,3
%A A112351 _Gary W. Adamson_, Sep 05 2005