cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112354 Inverse Euler transform of n!. Also the number of sequences of permutations with no global descents which are Lyndon (smallest in lexicographic order of all cyclic shifts of the sequences) where the size of the sequence = sum of sizes of the permutations.

This page as a plain text file.
%I A112354 #35 Nov 21 2022 08:22:13
%S A112354 1,1,4,17,92,572,4156,34159,314368,3199844,35703996,433421495,
%T A112354 5687955724,80256874912,1211781887796,19496946534720,333041104402860,
%U A112354 6019770246910128,114794574818830716,2303332661416242633,48509766592884311132,1069983257387132347080
%N A112354 Inverse Euler transform of n!. Also the number of sequences of permutations with no global descents which are Lyndon (smallest in lexicographic order of all cyclic shifts of the sequences) where the size of the sequence = sum of sizes of the permutations.
%H A112354 Seiichi Manyama, <a href="/A112354/b112354.txt">Table of n, a(n) for n = 1..449</a> (terms 1..200 from Alois P. Heinz)
%H A112354 M. Aguiar and A. Lauve, <a href="https://pdfs.semanticscholar.org/a511/fc8121e916907c046730a803d6725549ef4b.pdf">Antipode and Convolution Powers of the Identity in Graded Connected Hopf Algebras</a>, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1083-1094.
%H A112354 M. Aguiar, A. Lauve, <a href="https://arxiv.org/abs/1403.7584">The characteristic polynomial of the Adams operators on graded connected Hopf algebras</a>, arXiv:1403.7584 [math.RA], 2014.
%F A112354 Product_{k>=1} 1/(1-x^k)^{a(k)} = Sum_{n>=0} n! x^n.
%F A112354 a(n) ~ n! * (1 - 1/n - 1/n^2 - 4/n^3 - 23/n^4 - 171/n^5 - 1542/n^6 - 16241/n^7 - 194973/n^8 - 2622610/n^9 - 39027573/n^10 - ...), for coefficients see A113869. - _Vaclav Kotesovec_, Sep 04 2014, extended Nov 27 2020
%e A112354 a(3) = 4 because (123), (213), (132) and (1,21) are all Lyndon.
%e A112354 a(4) = 17 because there are 13 permutations with no global descents of size 4 and (1,123), (1,213), (1,132) are all Lyndon.
%e A112354 a(5) = 92 = 71 permutations with no global descents+13 sequences of the form (1,pi) where pi in S_4 with no global descents+(1,1,1,21),(1,21,21),(1,1,123),(1,1,213),(1,1,132),(21,123),(21,213),(21,132).
%p A112354 read transforms; EULERi([seq(n!,n=1..30)]);
%p A112354 # The function EulerInvTransform is defined in A358451.
%p A112354 a := EulerInvTransform(factorial):
%p A112354 seq(a(n), n = 1..22); # _Peter Luschny_, Nov 21 2022
%t A112354 ff = Range[n = 22]!; s = {}; For[i = 1, i <= n, i++, AppendTo[s, i*ff[[i]] - Sum[s[[d]]*ff[[i-d]], {d, i-1}]]]; Table[Sum[If[Divisible[i, d], MoebiusMu[i/d], 0]*s[[d]], {d, 1, i}]/i, {i, n}] (* _Jean-François Alcover_, Apr 15 2016 *)
%Y A112354 Cf. A003319, A000142, A305786.
%K A112354 nonn
%O A112354 1,3
%A A112354 _Mike Zabrocki_, Sep 05 2005