cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112360 Triangle read by rows: T(n,k) is the LCM of all C(n,k) integers from 1 + C(n,0) + C(n,1) + ... + C(n,k-1) to C(n,0) + C(n,1) + ... + C(n,k) (0 <= k <= n).

This page as a plain text file.
%I A112360 #11 Mar 07 2018 06:47:59
%S A112360 1,1,2,1,6,4,1,12,210,8,1,60,27720,5460,16,1,60,720720,13385572200,
%T A112360 3398220,32,1,420,232792560,219060189739591200,60218289392461200,
%U A112360 4076731260,64,1,840,2329089562800,1182266884102822267511361600
%N A112360 Triangle read by rows: T(n,k) is the LCM of all C(n,k) integers from 1 + C(n,0) + C(n,1) + ... + C(n,k-1) to C(n,0) + C(n,1) + ... + C(n,k) (0 <= k <= n).
%C A112360 Column 1 yields A003418. a(n,n) = 2^n. - _Emeric Deutsch_, Feb 03 2006
%e A112360 Triangle begins:
%e A112360   1;
%e A112360   1,  2;
%e A112360   1,  6,     4;
%e A112360   1, 12,   210,    8;
%e A112360   1, 60, 27720, 5460, 16;
%e A112360   ...
%e A112360 The row for n = 3 is
%e A112360 1....3..........3.......1
%e A112360 1 lcm(2*3*4) lcm(5*6*7) 8 ====> 1 12 210 8.
%p A112360 T:=proc(n,k) if n=0 and k=0 then 1 else lcm(seq(j,j=1+sum(binomial(n,i),i=0..k-1)..sum(binomial(n,i),i=0..k))) fi end: for n from 0 to 7 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form - _Emeric Deutsch_, Feb 03 2006
%Y A112360 Cf. A112356, A112357, A112358, A112359.
%K A112360 easy,nonn,tabl
%O A112360 0,3
%A A112360 _Amarnath Murthy_, Sep 07 2005
%E A112360 More terms from _Emeric Deutsch_, Feb 03 2006