cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112388 a(n) is the smallest prime p such that p^n contains every digit.

Original entry on oeis.org

10123457689, 101723, 5437, 2339, 1009, 257, 139, 173, 83, 67, 31, 29, 37, 17, 17, 47, 19, 7, 5, 23, 23, 5, 11, 11, 17, 5, 5, 5, 5, 11, 5, 11, 11, 5, 5, 7, 5, 7, 3, 5, 5, 7, 7, 7, 3, 7, 3, 3, 5, 5, 5, 5, 3, 7, 7, 5, 3, 7, 5, 3, 3, 3, 3, 3, 3, 5, 3, 2, 3, 2, 3, 3, 3, 3, 5, 3, 3, 3, 2, 3, 5, 2
Offset: 1

Views

Author

Tanya Khovanova, Dec 05 2005

Keywords

Comments

Conjecture: a(n)=2 for all n>168. Checked up to n = 20000. - Robert Israel, Aug 28 2020

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      k:= 1:
      do k:= nextprime(k);
        if convert(convert(k^n,base,10),set) = {$0..9} then return k fi
      od
    end proc:
    f(1):= 10123457689:
    map(f, [$1..100]); # Robert Israel, Aug 28 2020
  • Mathematica
    f[n_] := Block[{k = 1}, While[ Union@IntegerDigits[ Prime[k]^n] != {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, k++ ]; Prime[k]]; Array[f, 82] (* Robert G. Wilson v, Dec 06 2005 *)
  • Python
    from sympy import nextprime
    def a(n):
        if n == 1: return 10123457689
        p = 2
        while not(len(set(str(p**n))) == 10): p = nextprime(p)
        return p
    print([a(n) for n in range(1, 83)]) # Michael S. Branicky, Jul 04 2021

Extensions

More terms from Robert G. Wilson v, Dec 06 2005