A112413 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and starting with exactly k UD's, where U=(1,1), D=(1,-1) (0 <= k <= n).
1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 3, 1, 0, 1, 28, 9, 3, 1, 0, 1, 90, 28, 9, 3, 1, 0, 1, 297, 90, 28, 9, 3, 1, 0, 1, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 3432, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 41990, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 0
Offset: 0
Examples
T(5,2)=3 because we have UDUDUUDDUD, UDUDUUDUDD and UDUDUUUDDD, where U=(1,1), D=(1,-1). Triangle begins: 1; 0, 1; 1, 0, 1; 3, 1, 0, 1; 9, 3, 1, 0, 1; 28, 9, 3, 1, 0, 1;
Programs
-
Maple
T:=proc(n,k) local c: c:=n->binomial(2*n,n)/(n+1): if k
Formula
T(n,k) = c(n-k) - c(n-k-1), where c(n) = binomial(2n, n)/(n+1) is the n-th Catalan number. G.f. = (1-z)*C/(1-tz), where C = (1-sqrt(1-4z))/(2z) is the Catalan function.
Comments