This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112469 #20 Apr 17 2025 09:49:49 %S A112469 1,1,2,1,3,0,5,-3,10,-11,23,-32,57,-87,146,-231,379,-608,989,-1595, %T A112469 2586,-4179,6767,-10944,17713,-28655,46370,-75023,121395,-196416, %U A112469 317813,-514227,832042,-1346267,2178311,-3524576,5702889,-9227463,14930354,-24157815,39088171,-63245984,102334157 %N A112469 Partial sums of (-1)^n*Fibonacci(n-1). %C A112469 Diagonal sums of Riordan array (1/(1-x), x/(1+x)), A112468. %H A112469 Vincenzo Librandi, <a href="/A112469/b112469.txt">Table of n, a(n) for n = 0..300</a> %H A112469 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,-1). %F A112469 G.f.: (1+x)/((1-x)*(1+x-x^2)). %F A112469 a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-2k} C(n-k-j-1, n-2k-j)*(-1)^(n-j). %F A112469 From _G. C. Greubel_, Apr 17 2025: (Start) %F A112469 a(n) = 2 + (-1)^n*Fibonacci(n-2). %F A112469 E.g.f.: 2*exp(x) - exp(-x/2)*( cosh(sqrt(5)*x/2) + (3/sqrt(5))*sinh(sqrt(5)*x/2) ). (End) %p A112469 a[0]:=1:a[1]:=1:a[2]:=2:a[3]:=1:for n from 4 to 50 do a[n]:=2*a[n-2]-a[n-3] od: seq(a[n], n=0..42); # _Zerinvary Lajos_, Apr 04 2008 %t A112469 Accumulate[Table[(-1)^n Fibonacci[n-1],{n,0,50}]] (* _Harvey P. Dale_, Nov 05 2011 *) %t A112469 Table[2 +(-1)^n*Fibonacci[n-2], {n,0,50}] (* _G. C. Greubel_, Apr 17 2025 *) %o A112469 (Magma) %o A112469 A112469:= func< n | 2 + (-1)^n*Fibonacci(n-2) >; %o A112469 [A112469(n): n in [0..40]]; // _G. C. Greubel_, Apr 17 2025 %o A112469 (SageMath) %o A112469 def A112469(n): return 2+(-1)^n*fibonacci(n-2) %o A112469 print([A112469(n) for n in range(41)]) # _G. C. Greubel_, Apr 17 2025 %Y A112469 Cf. A000045, A078024, A112468. %K A112469 easy,sign %O A112469 0,3 %A A112469 _Paul Barry_, Sep 06 2005