A112474 Squares that are the sum of three distinct positive cubes.
36, 225, 729, 2304, 2809, 3481, 5041, 6084, 7056, 7569, 8100, 9216, 9604, 13456, 14400, 14641, 15625, 17956, 23409, 26244, 26569, 27889, 32400, 35344, 41616, 45369, 46656, 50176, 50625, 51076, 52900, 57600, 58564, 59536, 63001, 64009
Offset: 1
Keywords
Examples
36 = 6^2 = 1^3 + 2^3 + 3^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Lim=64009;sqlim=Floor[Sqrt[Lim]];cblim=Ceiling[Lim^(1/3)]; Select[Range[sqlim]^2,MemberQ[ Union[Total/@Subsets[Range[cblim]^3,{3}]],#]&] (* James C. McMahon, Jun 04 2024 *)
-
PARI
has(n)=my(x3,z); for(x=sqrtnint(n\3,3)+1, sqrtnint(n,3), x3=x^3; for(y=sqrtnint((n-x3)\2,3)+1, min(x-1,sqrtnint(n-x3,3)), if(ispower(n-x3-y^3,3,&z) && z
0, return(1)))); 0 list(lim)=my(v=List(),t); for(n=6,sqrtint(lim\1), if(has(t=n^2), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Sep 20 2016
Extensions
Offset corrected by Charles R Greathouse IV, Sep 20 2016