cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112486 Coefficient triangle for polynomials used for e.g.f.s for unsigned Stirling1 diagonals.

This page as a plain text file.
%I A112486 #66 Apr 29 2025 18:57:08
%S A112486 1,1,1,2,5,3,6,26,35,15,24,154,340,315,105,120,1044,3304,4900,3465,
%T A112486 945,720,8028,33740,70532,78750,45045,10395,5040,69264,367884,1008980,
%U A112486 1571570,1406790,675675,135135,40320,663696,4302216,14777620,29957620
%N A112486 Coefficient triangle for polynomials used for e.g.f.s for unsigned Stirling1 diagonals.
%C A112486 The k-th diagonal of |A008275| appears as the k-th column in |A008276| with k-1 leading zeros.
%C A112486 The recurrence, given below, is derived from (d/dx)g1(k,x) - g1(k,x)= x*(d/dx)g1(k-1,x) + g1(k-1,x), k >= 1, with input g(-1,x):=0 and initial condition g1(k,0)=1, k >= 0. This differential recurrence for the e.g.f. g1(k,x) follows from the one for unsigned Stirling1 numbers.
%C A112486 The column sequences start with A000142 (factorials), A001705, A112487- A112491, for m=0,...,5.
%C A112486 The main diagonal gives (2*k-1)!! = A001147(k), k >= 1.
%C A112486 This computation was inspired by the Bender article (see links), where the Stirling polynomials are discussed.
%C A112486 The e.g.f. for the k-th diagonal, k >= 1, of the unsigned Stirling1 triangle |A008275| with k-1 leading zeros is g1(k-1,x) = exp(x)*Sum_{m=0..k-1} a(k,m)*(x^(k-1+m))/(k-1+m)!.
%C A112486 a(k,n) = number of lists with entries from [n] such that (i) each element of [n] occurs at least once and at most twice, (ii) for each i that occurs twice, all entries between the two occurrences of i are > i, and (iii) exactly k elements of [n] occur twice. Example: a(1,2)=5 counts 112, 121, 122, 211, 221, and a(2,2)=3 counts 1122,1221,2211. - _David Callan_, Nov 21 2011
%H A112486 G. C. Greubel, <a href="/A112486/b112486.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A112486 Roland Bacher, <a href="https://doi.org/10.37236/2522">Counting Packings of Generic Subsets in Finite Groups</a>, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
%H A112486 C. M. Bender, D. C. Brody and B. K. Meister, <a href="https://arxiv.org/abs/math-ph/0509008">Bernoulli-like polynomials associated with Stirling Numbers</a>, arXiv:math-ph/0509008 [math-ph], 2005.
%H A112486 Wolfdieter Lang, <a href="/A112486/a112486.txt">First 10 rows</a>.
%F A112486 a(k, m) = (k+m)*a(k-1, m) + (k+m-1)*a(k-1, m-1) for k >= m >= 0, a(0, 0)=1, a(k, -1):=0, a(k, m)=0 if k < m.
%F A112486 From _Tom Copeland_, Oct 05 2011: (Start)
%F A112486 With polynomials
%F A112486 P(0,t) = 0
%F A112486 P(1,t) = 1
%F A112486 P(2,t) = -(1 + t)
%F A112486 P(3,t) = 2 + 5 t + 3 t^2
%F A112486 P(4,t) = -( 6 + 26 t + 35 t^2 + 15 t^3)
%F A112486 P(5,t) = 24 + 154 t +340 t^2 + 315 t^3 + 105 t^4
%F A112486 Apparently, P(n,t) = (-1)^(n+1) PW[n,-(1+t)] where PW are the Ward polynomials A134991. If so, an e.g.f. for the polynomials is
%F A112486   A(x,t) = -(x+t+1)/t - LW{-((t+1)/t) exp[-(x+t+1)/t]}, where LW(x) is a suitable branch of the Lambert W Fct. (e.g., see A135338). The comp. inverse in x (about x = 0) is B(x) = x + (t+1) [exp(x) - x - 1]. See A112487 for special case t = 1. These results are a special case of A134685 with u(x) = B(x), i.e., u_1=1 and (u_n)=(1+t) for n>0.
%F A112486 Let h(x,t) = 1/(dB(x)/dx) = 1/[1+(1+t)*(exp(x)-1)], an e.g.f. in x for row polynomials in t of signed A028246 , then P(n,t), is given by
%F A112486 (h(x,t)*d/dx)^n x, evaluated at x=0, i.e., A(x,t)=exp(x*h(u,t)*d/du) u, evaluated at u=0. Also, dA(x,t)/dx = h(A(x,t),t).
%F A112486 The e.g.f. A(x,t) = -v * Sum_{j>=1} D(j-1,u) (-z)^j / j! where u=-(x+t+1)/t, v=1+u, z=(1+t*v)/(t*v^2) and D(j-1,u) are the polynomials of A042977. dA/dx = -1/[t*(v-A)].(End)
%F A112486 A133314 applied to the derivative of A(x,t) implies (a.+b.)^n = 0^n, for (b_n)=P(n+1,t) and (a_0)=1, (a_1)=t+1, and (a_n)=t*P(n,t) otherwise. E.g., umbrally, (a.+b.)^2 = a_2*b_0 + 2 a_1*b_1 + a_0*b_2 =0. - Tom Copeland, Oct 08 2011
%F A112486 The row polynomials R(n,x) may be calculated using R(n,x) = 1/x^(n+1)*D^n(x), where D is the operator (x^2+x^3)*d/dx. - _Peter Bala_, Jul 23 2012
%F A112486 For n>0, Sum_{k=0..n} a(n,k)*(-1/(1+W(t)))^(n+k+1) = (t d/dt)^(n+1) W(t), where W(t) is Lambert W function. For t=-x, this gives Sum_{k>=1} k^(k+n)*x^k/k! = - Sum_{k=0..n} a(n,k)*(-1/(1+W(-x)))^(n+k+1). - _Max Alekseyev_, Nov 21 2019
%F A112486 Conjecture: row polynomials are R(n,x) = Sum_{i=0..n} Sum_{j=0..i} Sum_{k=0..j} (n+i)!*Stirling2(n+j-k,j-k)*x^k*(x+1)^(j-k)*(-1)^(n+j+k)/((n+j-k)!*(i-j)!*k!). - _Mikhail Kurkov_, Apr 21 2025
%e A112486 Triangle begins:
%e A112486     1;
%e A112486     1,    1;
%e A112486     2,    5,     3;
%e A112486     6,   26,    35,    15;
%e A112486    24,  154,   340,   315,   105;
%e A112486   120, 1044,  3304,  4900,  3465,   945;
%e A112486   720, 8028, 33740, 70532, 78750, 45045, 10395;
%e A112486 k=3 column of |A008276| is [0,0,2,11,35,85,175,...] (see A000914), its e.g.f. exp(x)*(2*x^2/2! + 5* x^3/3! + 3*x^4/4!).
%p A112486 A112486 := proc(n,k)
%p A112486     if n < 0 or k<0 or  k> n then
%p A112486         0 ;
%p A112486     elif n = 0 then
%p A112486         1 ;
%p A112486     else
%p A112486         (n+k)*procname(n-1,k)+(n+k-1)*procname(n-1,k-1) ;
%p A112486     end if;
%p A112486 end proc: # _R. J. Mathar_, Dec 19 2013
%t A112486 A112486 [n_, k_] := A112486[n, k] = Which[n<0 || k<0 || k>n, 0, n == 0, 1, True, (n+k)*A112486[n-1, k]+(n+k-1)*A112486[n-1, k-1]]; Table[A112486[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 05 2014, after _R. J. Mathar_ *)
%Y A112486 Cf. A112007 (triangle for o.g.f.s for unsigned Stirling1 diagonals). A112487 (row sums).
%K A112486 nonn,easy,tabl
%O A112486 0,4
%A A112486 _Wolfdieter Lang_, Sep 12 2005