cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112494 Sixth diagonal of the Stirling2 triangle A048993 and sixth column of triangle A008278.

This page as a plain text file.
%I A112494 #39 Jan 15 2025 10:58:25
%S A112494 1,63,966,7770,42525,179487,627396,1899612,5135130,12662650,28936908,
%T A112494 62022324,125854638,243577530,452329200,809944464,1404142047,
%U A112494 2364885369,3880739170,6220194750,9759104355,15015551265,22693687380,33738295500,49402080000,71327958156
%N A112494 Sixth diagonal of the Stirling2 triangle A048993 and sixth column of triangle A008278.
%H A112494 T. D. Noe, <a href="/A112494/b112494.txt">Table of n, a(n) for n = 6..1000</a>
%H A112494 Steve Butler and Pavel Karasik, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Butler/butler7.html">A note on nested sums</a>, J. Int. Seq. 13 (2010), 10.4.4, page 5.
%H A112494 Feihu Liu, Guoce Xin, and Chen Zhang, <a href="https://arxiv.org/abs/2412.18744">Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS</a>, arXiv:2412.18744 [math.CO], 2024. See p. 29.
%H A112494 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A112494 a(n) = Stirling2(n, n-5) with Stirling2(n, m)=A048993(n, m). a(n) = A008278(n+5, 6).
%F A112494 a(n) = sum(A008517(5, m+1)*binomial(n+5-m, 2*5), m=0..4) from the o.g.f. See p. 257 eq. (6.43) of the R. L. Graham et al. book quoted in A008517.
%F A112494 O.g.f.: x*sum(A008517(5, m+1)*x^m, m=0..4)/(1-x)^11 with the fifth row [1, 52, 328, 444, 120] of the second-order Eulerian triangle A008517.
%F A112494 E.g.f. with offset n=-4: exp(x)*sum(A112493(5, m)*(x^(m+5))/(m+5)!, m=0..5) with the k=5 row [1, 57, 546, 1750, 2205, 945] of triangle A112493.
%F A112494 a(n) = sum(A112493(5, m)*binomial(n+4, 5+m), m=0..5) from the e.g.f. (coefficients from A112493(5, m) are [1, 57, 546, 1750, 2205, 945]).
%F A112494 With an offset of 1 the o.g.f. is D^5(x/(1-x)), where D is the operator x/(1-x)*d/dx. - _Peter Bala_, Jul 02 2012
%F A112494 G.f.: x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11. - _Colin Barker_, Nov 04 2017
%t A112494 Table[StirlingS2[n, n-5], {n, 6, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Sep 27 2008 *)
%o A112494 (Sage) [stirling_number2(n,n-5) for n in range(6, 30)] # _Zerinvary Lajos_, May 16 2009
%o A112494 (PARI) for(n=6,50, print1(stirling(n,n-5,2), ", ")) \\ _G. C. Greubel_, Oct 22 2017
%o A112494 (PARI) Vec(x^6*(1 + 52*x + 328*x^2 + 444*x^3 + 120*x^4) / (1 - x)^11 + O(x^40)) \\ _Colin Barker_, Nov 04 2017
%Y A112494 Cf. A008517, A112493.
%Y A112494 Cf. A001298 (fifth diagonal, resp. column).
%K A112494 nonn,easy
%O A112494 6,2
%A A112494 _Wolfdieter Lang_, Oct 14 2005