cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112495 Third column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

This page as a plain text file.
%I A112495 #18 Mar 02 2025 23:41:31
%S A112495 3,25,130,546,2037,7071,23436,75328,237127,735813,2260518,6896046,
%T A112495 20933673,63325051,191088976,575625900,1731858075,5206059585,
%U A112495 15640198410,46966732090,140996664733,423191320215,1269993390420
%N A112495 Third column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
%C A112495 2*a(n-4) is the number of ternary words of length n where two of the letters are used at least twice.  For example, for n=5 the 50 words that use 0 and 1 at least twice are 00011 (10 of this type), 00111 (10 of this type) and 00112 (30 of this type). - _Enrique Navarrete_, Feb 14 2025
%H A112495 G. C. Greubel, <a href="/A112495/b112495.txt">Table of n, a(n) for n = 0..1000</a>
%H A112495 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (10,-40,82,-91,52,-12).
%F A112495 a(n) = 3*a(n-1)+ (n+3)*(2^(n+2)-(n+3)), n>=1, a(0)=3.
%F A112495 G.f.: (3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x)).
%F A112495 a(n) = 3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2. - _Vaclav Kotesovec_, Jul 23 2021
%F A112495 E.g.f.: (1/2)*exp(x)*(exp(x)-x-1)^2 (with offset 4). - _Enrique Navarrete_, Feb 14 2025
%t A112495 CoefficientList[Series[(3 - 5*x)/(((1 - x)^3)*((1 - 2*x)^2)*(1 - 3*x)), {x, 0, 50}], x] (* _G. C. Greubel_, Nov 13 2017 *)
%t A112495 Table[3^(n+4)/2 - (n+6)*2^(n+3) + n^2/2 + 9*n/2 + 21/2, {n,0,25}] (* _Vaclav Kotesovec_, Jul 23 2021 *)
%o A112495 (PARI) x='x+O('x^50); Vec((3-5*x)/(((1-x)^3)*((1-2*x)^2)*(1-3*x))) \\ _G. C. Greubel_, Nov 13 2017
%Y A112495 Cf. A000295 (second column).
%Y A112495 Column k=2 of A124324 (shifted).
%K A112495 nonn,easy
%O A112495 0,1
%A A112495 _Wolfdieter Lang_, Oct 14 2005