cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112496 Fourth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

This page as a plain text file.
%I A112496 #12 Jul 23 2021 02:46:19
%S A112496 15,210,1750,11368,63805,325930,1561516,7150000,31682651,137031986,
%T A112496 582035714,2438479592,10109790809,41579014154,169946747160,
%U A112496 691299506640,2801567046135,11320801495410,45642930545070,183698923750440
%N A112496 Fourth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
%H A112496 G. C. Greubel, <a href="/A112496/b112496.txt">Table of n, a(n) for n = 0..1000</a>
%H A112496 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (20, -175, 882, -2835, 6072, -8777, 8458, -5204, 1848, -288).
%F A112496 G.f.: (15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x)).
%F A112496 a(n) = 4*a(n-1) + (n+5)*A112495(n).
%F A112496 a(n) = 2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6. - _Vaclav Kotesovec_, Jul 23 2021
%t A112496 CoefficientList[Series[(15 - 90*x + 175*x^2 - 112*x^3)/((1 - x)^4*(1 - 2*x)^3*(1 - 3*x)^2*(1 - 4*x)), {x, 0, 50}], x] (* _G. C. Greubel_, Nov 13 2017 *)
%t A112496 Table[2^(2*n+11)/3- 3^(n+5)*(n+9)/2 + 2^(n+3)*(n^2 + 15*n + 58) - n^3/6 - 3*n^2 - 55*n/3 - 229/6, {n,0,25}] (* _Vaclav Kotesovec_, Jul 23 2021 *)
%o A112496 (PARI) x='x+O('x^50); Vec((15-90*x+175*x^2-112*x^3)/((1-x)^4*(1-2*x)^3*(1-3*x)^2*(1-4*x))) \\ _G. C. Greubel_, Nov 13 2017
%Y A112496 Cf. A112495 (third column).
%Y A112496 Column k=3 of A124324 (shifted).
%K A112496 nonn,easy
%O A112496 0,1
%A A112496 _Wolfdieter Lang_, Oct 14 2005