cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112497 Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.

This page as a plain text file.
%I A112497 #11 Nov 14 2017 03:04:29
%S A112497 105,2205,26775,247555,1939630,13609310,88346258,541831290,3184396215,
%T A112497 18114492851,100467071393,546227989621,2923225973476,15447710150460,
%U A112497 80807432442660,419245751359380,2160664798858005,11075023230179865
%N A112497 Fifth column of triangle A112493 used for e.g.f.s of Stirling2 diagonals.
%H A112497 G. C. Greubel, <a href="/A112497/b112497.txt">Table of n, a(n) for n = 0..1000</a>
%H A112497 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (35, -560, 5432, -35714, 168542, -589632, 1556776, -3126949, 4777591, -5506936, 4703032, -2881136, 1195632, -300672, 34560).
%F A112497 G.f.: (105-1470*x+8400*x^2-25130*x^3+41615*x^4-36280*x^5+13048*x^6) / product((1-j*x)^(6-j), j=1..5).
%F A112497 a(n) = 5*a(n-1) + (n+7)*A112496(n).
%t A112497 CoefficientList[Series[(105 - 1470*x + 8400*x^2 - 25130*x^3 + 41615*x^4 - 36280*x^5 + 13048*x^6)/Product[(1 - j*x)^(6 - j), {j, 1, 5}], {x, 0, 50}], x] (* _G. C. Greubel_, Nov 13 2017 *)
%o A112497 (PARI) x='x+O('x^50); Vec((105 -1470*x +8400*x^2 -25130*x^3 +41615*x^4 -36280*x^5 +13048*x^6)/((1-x)^5*(1-2*x)^4*(1-3*x)^3*(1-4*x)^2*(1-5*x))) \\ _G. C. Greubel_, Nov 13 2017
%Y A112497 Cf. A112496 (fourth column).
%Y A112497 Column k=4 of A124324 (shifted).
%K A112497 nonn,easy
%O A112497 0,1
%A A112497 _Wolfdieter Lang_, Oct 14 2005