cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112500 Triangle of column sequences with a certain o.g.f. pattern.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 10, 1, 1, 26, 60, 20, 1, 1, 57, 282, 225, 35, 1, 1, 120, 1149, 1882, 665, 56, 1, 1, 247, 4272, 13070, 9107, 1666, 84, 1, 1, 502, 14932, 79872, 100751, 35028, 3696, 120, 1, 1, 1013, 49996, 444902, 957197, 584325, 113428, 7470, 165, 1, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

The column o.g.f.s of this triangle appear as factors in the column o.g.f.s of triangle A008517 (second-order Eulerian numbers).

Examples

			Rows: [1]; [1,1]; [1,4,1]; [1,11,10,1]; [1,26,60,20,1]; [1,57,282,225,35,1]; ...
a(4,3)= 60 = 6 + 12 + 9 + 12 + 9 + 12 from the binomial(4,2)=6 terms of the sum corresponding to (n_1,n_2,n_3) = (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1) and (0,1,1).
		

Crossrefs

Cf. A112501 (row sums).

Formula

G.f. column k: G(k, x):= x^(k-1)/product((1-j*x)^(k-j+1), j=1..k), k>=1.
The column sequences start with A000012 (powers of 1), A000295 (Eulerian numbers), A112502-A112504.
a(n+k-1, k)=sum of product(binomial(n_j + k - 1, k - 1)*j^(n_j), j=1..k) with sum(n_j, j=1..k)=n, n_j >=0. There are binomial(n+k-1, k-1) terms of this sum and 1<=k<=n+1. a(n, k)=0 if n+1

A112498 Third column of second-order Eulerian triangle A008517 divided by 2.

Original entry on oeis.org

3, 29, 164, 726, 2805, 9975, 33630, 109424, 347519, 1085313, 3349848, 10253994, 31203945, 94561643, 285716018, 861472836, 2593592883, 7800176565, 23441423340, 70410252350, 211411111133, 634610819679, 1904620987014
Offset: 3

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

See A004301 for the doubled sequence.

Crossrefs

Cf. A000295 (one half of second column).

Formula

a(n)=A008517(n, 3)/2.
G.f.: x^3*(3-x-6*x^2)/(((1-x)^3)*((1-2*x)^2)*(1-3*x)). See the comment on column g.f.s under A008517.
a(n) = 3*a(n-1) + (2*n-3)*(2^(n-1)-n), n>3, with a(3)=3.
a(n)= 3*A112502(n-3) - A112502(n-4) - 6*A112502(n-5), n>=5.

A112504 Fifth column of triangle A112500.

Original entry on oeis.org

1, 35, 665, 9107, 100751, 957197, 8110087, 62854845, 453710670, 3091406010, 20086835910, 125465290530, 758173316850, 4455503465430, 25571494599330, 143839855533270, 795332428661055, 4333564250230845, 23317657891319095
Offset: 0

Author

Wolfdieter Lang, Oct 14 2005

Keywords

Comments

For a combinatorial formula see A112500, case k=5.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Product[(1-j*x)^(6-j),{j,1,5}],{x,0,20}],x] (* Georg Fischer, Jul 10 2025 *)

Formula

G.f.: 1/product((1-j*x)^(6-j), j=1..5) = 1/(((1-x)^5)*((1-2*x)^4)*((1-3*x)^3)*((1-4*x)^2)*(1-5*x)).
a(n) computable from partial fraction decomposition of g.f. Cf. A112503.
Showing 1-3 of 3 results.