A112510 Least n-bit number whose binary representation's substrings represent the maximal number (A112509(n)) of distinct integers.
0, 2, 6, 12, 28, 56, 116, 244, 488, 984, 2008, 4016, 8048, 16240, 32480, 64968, 129992, 261064, 522128, 1044264, 2088552, 4177512, 8371816, 16743632, 33487312, 66976208, 134085072, 268170144, 536340304, 1072680624, 2145361584, 4290748080, 8585715376, 17171430752
Offset: 1
Links
- Martin Fuller, Table of n, a(n) for n = 1..80
- 2008/9 British Mathematical Olympiad Round 2, Problem 4, Jan 29 2009.
Crossrefs
Programs
-
Python
from itertools import product def c(w): return len(set(w[i:j+1] for i in range(len(w)) if w[i] != "0" for j in range(i,len(w)))) + int("0" in w) def a(n): if n == 1: return 0 m = -1 for b in product("01", repeat=n-1): v = c("1"+"".join(b)) if v > m: m, argm = v, int("1"+"".join(b), 2) return argm print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jan 13 2023
Extensions
a(21)-a(31) from Joseph Myers, Feb 01 2009
a(32) onwards from Martin Fuller, Jul 24 2025
Comments