This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112519 #12 Sep 08 2022 08:45:22 %S A112519 1,0,1,0,0,1,0,2,0,1,0,1,4,0,1,0,12,2,6,0,1,0,14,28,3,8,0,1,0,100,32, %T A112519 48,4,10,0,1,0,180,249,54,72,5,12,0,1,0,990,440,455,80,100,6,14,0,1,0, %U A112519 2310,2552,792,726,110,132,7,16,0,1,0,10920,5876,4836,1248,1070,144,168,8,18,0,1 %N A112519 Riordan array (1, x*c(x)*c(-x*c(x))), c(x) the g.f. of A000108. %C A112519 Row sums are A112520. Second column is essentially A055392. Inverse is A112517. Riordan array product (1, x*c(x))*(1, x*c(-x)). %H A112519 G. C. Greubel, <a href="/A112519/b112519.txt">Rows n = 0..50 of the triangle, flattened</a> %F A112519 Riordan array (1, (sqrt(3-2*sqrt(1-4*x)) - 1)/2). %F A112519 T(n, k) = (k/n)*Sum_{j=0..n} (-1)^(j-k)*C(2*n-j-1, n-j)*C(2*j-k-1, j-k), with T(0, 0) = 1. %F A112519 T(n, k) = (k/n)*binomial(2*n-k-1, n-1)*Hypergoemetric3F2([k-n, k/2, (1+k)/2], [k-2*n+1, k], -4), with T(0, 0) = 1. - _G. C. Greubel_, Jan 12 2022 %e A112519 Triangle begins %e A112519 1; %e A112519 0, 1; %e A112519 0, 0, 1; %e A112519 0, 2, 0, 1; %e A112519 0, 1, 4, 0, 1; %e A112519 0, 12, 2, 6, 0, 1; %e A112519 0, 14, 28, 3, 8, 0, 1; %e A112519 0, 100, 32, 48, 4, 10, 0, 1; %e A112519 0, 180, 249, 54, 72, 5, 12, 0, 1; %e A112519 0, 990, 440, 455, 80, 100, 6, 14, 0, 1; %t A112519 (* First program *) %t A112519 c[x_]:= (1 - Sqrt[1-4x])/(2x); %t A112519 (* The function RiordanArray is defined in A256893. *) %t A112519 RiordanArray[1&, # c[#] c[-# c[#]]&, 12] // Flatten (* _Jean-François Alcover_, Jul 16 2019 *) %t A112519 (* Second program *) %t A112519 T[n_, k_]:= If[k==n, 1, (k/n)*Binomial[2*n-k-1, n-1]*HypergeometricPFQ[{k-n, k/2, (1+k)/2}, {k-2*n+1, k}, -4]]; %t A112519 Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jan 12 2022 *) %o A112519 (Magma) %o A112519 A112519:= func< n,k | n eq 0 and k eq 0 select 1 else (k/n)*(&+[(-1)^j*Binomial(2*n-k-j-1, n-k-j)*Binomial(2*j+k-1, j): j in [0..n-k]]) >; %o A112519 [A112519(n,k): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Jan 12 2022 %o A112519 (Sage) %o A112519 @CachedFunction %o A112519 def A112519(n,k): %o A112519 if (k==n): return 1 %o A112519 else: return (k/n)*sum( (-1)^j*binomial(2*n-k-j-1, n-k-j)*binomial(2*j+k-1, j) for j in (0..n-k) ) %o A112519 flatten([[A112519(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Jan 12 2022 %Y A112519 Cf. A000108, A055392, A112517, A112520. %K A112519 easy,nonn,tabl %O A112519 0,8 %A A112519 _Paul Barry_, Sep 09 2005