cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112575 Chebyshev transform of the second kind of the Pell numbers.

This page as a plain text file.
%I A112575 #30 May 18 2025 04:08:52
%S A112575 0,1,2,3,6,12,22,41,78,147,276,520,980,1845,3474,6543,12322,23204,
%T A112575 43698,82293,154974,291847,549608,1035024,1949160,3670665,6912610,
%U A112575 13017851,24515262,46167228,86942286,163730017,308336942,580661211,1093503228,2059289112
%N A112575 Chebyshev transform of the second kind of the Pell numbers.
%C A112575 The Chebyshev transform of the second kind maps the sequence with g.f. g(x) to the sequence with g.f. (1/(1+x^2))g(x/(1+x^2)).
%H A112575 G. C. Greubel, <a href="/A112575/b112575.txt">Table of n, a(n) for n = 0..1000</a>
%H A112575 Jia Huang, <a href="https://arxiv.org/abs/2501.07463">A coin flip game and generalizations of Fibonacci numbers</a>, arXiv:2501.07463 [math.CO], 2025. See pp. 9-10.
%H A112575 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-1).
%F A112575 G.f.: x/(1-2*x+x^2-2*x^3+x^4).
%F A112575 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k, k)*A000129(n-2k).
%F A112575 a(n) = Sum_{k=0..n} (-1)^((n-k)/2)*C((n+k)/2, k)*(1+(-1)^(n-k))*A000129(k)/2.
%t A112575 Table[Sum[(-1)^k*Binomial[n-k, k]*Fibonacci[n-2*k, 2], {k,0,Floor[n/2]}], {n, 0, 40}] (* _G. C. Greubel_, Jan 14 2022 *)
%o A112575 (Sage) [sum((-1)^k*binomial(n-k,k)*lucas_number1(n-2*k, 2, -1) for k in (0..(n/2))) for n in (0..40)] # _G. C. Greubel_, Jan 14 2022
%o A112575 (Magma)
%o A112575 C<I>:= ComplexField();
%o A112575 [(&+[Binomial(n-k,k)*Round(I^(n-1)*Evaluate(ChebyshevU(n-2*k), -I)): k in [0..Floor(n/2)]]) : n in [0..40]]; // _G. C. Greubel_, Jan 14 2022
%Y A112575 Cf. A000129.
%K A112575 easy,nonn
%O A112575 0,3
%A A112575 _Paul Barry_, Sep 14 2005