cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112581 Number of partitions of n into 5-smooth parts.

This page as a plain text file.
%I A112581 #7 Feb 16 2025 08:32:59
%S A112581 1,2,3,5,7,11,14,21,28,39,50,69,87,115,146,189,235,302,371,469,575,
%T A112581 714,867,1072,1292,1577,1894,2293,2734,3293,3902,4664,5511,6542,7690,
%U A112581 9094,10638,12507,14588,17073,19830,23121,26757,31066,35860,41469,47701
%N A112581 Number of partitions of n into 5-smooth parts.
%H A112581 Robert Israel, <a href="/A112581/b112581.txt">Table of n, a(n) for n = 1..10000</a>
%H A112581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SmoothNumber.html">Smooth Number</a>
%H A112581 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionP.html">Partition Function P</a>
%F A112581 G.f.: Product_{a>=0} Product_{b>=0} Product_{c>=0} 1/(1-x^(2^a*3^b*5^c)). - _Robert Israel_, Apr 16 2019
%p A112581 N:= 100:
%p A112581 P:= select(t -> max(numtheory:-factorset(t))<=5, [$1..N]):
%p A112581 S:= series(mul(1/(1-q^k),k=P),q,N+1):
%p A112581 seq(coeff(S,q,k),k=1..N); # _Robert Israel_, Apr 16 2019
%Y A112581 Cf. A000041, A051037, A105420, A112582.
%K A112581 nonn
%O A112581 1,2
%A A112581 _Reinhard Zumkeller_, Sep 14 2005