cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112643 Odd squarefree abundant numbers.

Original entry on oeis.org

15015, 19635, 21945, 23205, 25935, 26565, 31395, 33495, 33915, 35805, 39585, 41055, 42315, 42735, 45885, 47355, 49665, 50505, 51765, 54285, 55965, 58695, 61215, 64155, 68145, 70455, 72345, 77385, 80535, 82005, 83265, 84315, 91245
Offset: 1

Views

Author

Labos Elemer, Sep 20 2005

Keywords

Comments

Deviates from A046391 (does not contain 36465, 40755 for example).
The numbers of terms not exceeding 10^k, for k = 5, 6, ..., are 34, 134, 1663, 16328, 175630, 1694621, 16726454, ... . Apparently, the asymptotic density of this sequence exists and equals 0.00016... . - Amiram Eldar, Sep 02 2022
From Amiram Eldar, Jan 15 2025: (Start)
The least term that is not divisible by 5 is a(3696) = 22309287.
The least term that is not divisible by 3 is a(5607800) = 33426748355.
The least term that is coprime to 15 is 1357656019974967471687377449. (End)

Examples

			199815 = 3 * 5 * 7 * 11 * 173, with 32 divisors adding up to 400896 = 2 * 199815 + 1266.
		

Crossrefs

Programs

  • Maple
    # see A087248 for the additional code
    isA112643 := proc(n)
        isA087248(n) and type(n,'odd') ;
    end proc:
    for n from 1 do
        if isA112643(n) then
            print(n);
        end if;
    end do: # R. J. Mathar, Nov 10 2014
  • Mathematica
    ta = {{0}}; Do[g = n; s = DivisorSigma[1, n] - 2 * n; If[Greater[s, 0] && Equal[Abs[MoebiusMu[n]], 1] && !Equal[Mod[n, 2], 0], Print[n, PrimeFactorList[n], s]; ta = Append[ta, n]], {n, 1, 200000}];{ta = Delete[ta, 1], g}(* Elemer *)
    Select[Range[1, 99999, 2], MoebiusMu[#] != 0 && DivisorSigma[1, #] > 2 # &] (* Alonso del Arte, Nov 11 2017 *)
  • PARI
    is(n)=if(n%2==0, return(0)); my(f=factor(n)); sigma(f)>2*n && vecmax(f[,2])==1 \\ Charles R Greathouse IV, Feb 21 2017

Formula

A087248 INTERSECT A005408.
omega(a(n)) >= 5, where omega(n) = A001221(n) is the number of distinct primes dividing n. - Amiram Eldar, Jan 15 2025