A112657 A Motzkin transform of Jacobsthal numbers.
1, 2, 7, 23, 79, 272, 943, 3278, 11419, 39830, 139057, 485795, 1697905, 5936348, 20760271, 72615143, 254028355, 888758030, 3109714117, 10881403229, 38077702909, 133251869648, 466325356273, 1631981113112, 5711490384901
Offset: 0
Formula
a(n) = Sum_{k=0..n} A026300(n, k)*(2^(k+1) + (-1)^k)/3, where A026300 is the Motzkin triangle; a(n) = Sum_{k=0..n} ((k+1)/(n+1))*Sum_{j=0..n+1} C(n+1, j)*C(j, 2j-n+k)*(2^(k+1) + (-1)^k)/3.
a(n) = Sum_{k=0..n} A089942(n,k)*2^k = Sum_{k=0..n} A071947(n,k)*2^(n-k). - Philippe Deléham, Mar 31 2007
Comments