A112658 Dean's Word: Omega 2,1: the trajectory of 0 -> 01, 1 -> 21, 2 -> 03, 3 -> 23.
0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0
Offset: 1
Keywords
Examples
The first few iterations of the morphism, starting with 0: Start: 0 Rules: 0 --> 01 1 --> 21 2 --> 03 3 --> 23 ------------- 0: (#=1) 0 1: (#=2) 01 2: (#=4) 0121 3: (#=8) 01210321 4: (#=16) 0121032101230321 5: (#=32) 01210321012303210121032301230321 6: (#=64) 0121032101230321012103230123032101210321012303230121032301230321 /* _Joerg Arndt_, Jul 18 2012 */
Links
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6.
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6. [Local copy]
- Kirby A. Baker, George F. McNulty, Walter Taylor, Growth Problems For Avoidable Words, Theoretical Computer Science, volume 69, number 3, 1989, pages 319-345. (See morphism start of section 3, page 325.)
- Richard A. Dean, A sequence without repeats on x, ..., Amer. Math. Monthly 72, 1965. pp. 383-385. MR 31 #350.
- George F. McNulty, Avoidable Words, conference slides, 2003, slides 38-39. (Also conference abstract.)
- Index entries for sequences that are fixed points of mappings
- Index entries for sequences related to squarefree words
Crossrefs
Programs
-
Mathematica
Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> {0, 3}, 3 -> {2, 3}}] &, {0}, 7] (* Robert G. Wilson v, Dec 27 2005 *)
-
PARI
a(n) = 2*bittest(n,valuation(n,2)+1) + !(n%2); \\ Kevin Ryde, Sep 09 2020
Formula
It should be easy to prove that a(4n) = 0, a(4n+2) = 2, a(8n+1) = 1, a(8n+5) = 3, a(4n+3) = a(2n+1). This would imply that a(2n) = 2(n mod 2), a(2n+1) = 1 + 2*A014707(n), with A014707(n) the classical paperfolding curve. - Ralf Stephan, Dec 28 2005
Comments