This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A112696 #19 Feb 26 2020 06:42:01 %S A112696 1,3,11,51,275,1619,10067,64979,431059,2920403,20119507,140513235, %T A112696 992530387,7078367187,50896392147,368577073107,2685777334227, %U A112696 19678579249107,144888698621907,1071443581980627,7954422715502547 %N A112696 Partial sum of Catalan numbers A000108 multiplied by powers of 2. %H A112696 Vincenzo Librandi, <a href="/A112696/b112696.txt">Table of n, a(n) for n = 0..300</a> %F A112696 a(n) = Sum_{k=0..n} C(k)*2^k, n >= 0, with C(n):=A000108(n). %F A112696 G.f.: c(2*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108. %F A112696 a(n) = Sum_{j=0..n} binomial(2*j,j)*2^j/(j+1). - _Zerinvary Lajos_, Oct 26 2006 %F A112696 Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012 %F A112696 a(n) ~ 2^(3*n+3)/(7*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012 %p A112696 a:=n->sum((binomial(2*j,j))*2^j/(j+1),j=0..n): seq(a(n), n=0..20); # _Zerinvary Lajos_, Oct 26 2006 %t A112696 Table[Sum[Binomial[2*j,j]*2^j/(j+1),{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 19 2012 *) %o A112696 (Sage) %o A112696 def A112696(): %o A112696 f, c, n = 1, 1, 1 %o A112696 while True: %o A112696 yield f %o A112696 n += 1 %o A112696 c = c * (8*n - 12) // n %o A112696 f += c %o A112696 a = A112696() %o A112696 print([next(a) for _ in range(21)]) # _Peter Luschny_, Nov 30 2016 %Y A112696 Third column (m=2) of triangle A112705. %K A112696 nonn,easy %O A112696 0,2 %A A112696 _Wolfdieter Lang_, Oct 31 2005