cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112696 Partial sum of Catalan numbers A000108 multiplied by powers of 2.

This page as a plain text file.
%I A112696 #19 Feb 26 2020 06:42:01
%S A112696 1,3,11,51,275,1619,10067,64979,431059,2920403,20119507,140513235,
%T A112696 992530387,7078367187,50896392147,368577073107,2685777334227,
%U A112696 19678579249107,144888698621907,1071443581980627,7954422715502547
%N A112696 Partial sum of Catalan numbers A000108 multiplied by powers of 2.
%H A112696 Vincenzo Librandi, <a href="/A112696/b112696.txt">Table of n, a(n) for n = 0..300</a>
%F A112696 a(n) = Sum_{k=0..n} C(k)*2^k, n >= 0, with C(n):=A000108(n).
%F A112696 G.f.: c(2*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers A000108.
%F A112696 a(n) = Sum_{j=0..n} binomial(2*j,j)*2^j/(j+1). - _Zerinvary Lajos_, Oct 26 2006
%F A112696 Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 4*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012
%F A112696 a(n) ~ 2^(3*n+3)/(7*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012
%p A112696 a:=n->sum((binomial(2*j,j))*2^j/(j+1),j=0..n): seq(a(n), n=0..20); # _Zerinvary Lajos_, Oct 26 2006
%t A112696 Table[Sum[Binomial[2*j,j]*2^j/(j+1),{j,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 19 2012 *)
%o A112696 (Sage)
%o A112696 def A112696():
%o A112696     f, c, n = 1, 1, 1
%o A112696     while True:
%o A112696         yield f
%o A112696         n += 1
%o A112696         c = c * (8*n - 12) // n
%o A112696         f += c
%o A112696 a = A112696()
%o A112696 print([next(a) for _ in range(21)]) # _Peter Luschny_, Nov 30 2016
%Y A112696 Third column (m=2) of triangle A112705.
%K A112696 nonn,easy
%O A112696 0,2
%A A112696 _Wolfdieter Lang_, Oct 31 2005