cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112697 Partial sum of Catalan numbers (A000108) multiplied by powers of 3.

This page as a plain text file.
%I A112697 #15 Sep 07 2022 09:04:15
%S A112697 1,4,22,157,1291,11497,107725,1045948,10428178,106126924,1097913928,
%T A112697 11511677470,122057782762,1306480339462,14098243951822,
%U A112697 153208673236237,1675240428936307,18417589741637077,203464608460961377
%N A112697 Partial sum of Catalan numbers (A000108) multiplied by powers of 3.
%H A112697 Vincenzo Librandi, <a href="/A112697/b112697.txt">Table of n, a(n) for n = 0..300</a>
%F A112697 a(n) = Sum_{k=0..n} C(k)*3^k, n>=0, with C(n) = A000108(n).
%F A112697 G.f.: c(3*x)/(1-x), where c(x):=(1-sqrt(1-4*x))/(2*x) is the o.g.f. of Catalan numbers (A000108).
%F A112697 Recurrence: (n+1)*a(n) = (13*n-5)*a(n-1) - 6*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 19 2012
%F A112697 a(n) ~ 12^(n+1)/(11*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 19 2012
%t A112697 CoefficientList[Series[(1-Sqrt[1-12*x])/(6*x)/(1-x), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 19 2012 *)
%o A112697 (PARI) x='x+O('x^50); Vec((1-sqrt(1-12*x))/(6*x*(1-x))) \\ _G. C. Greubel_, Mar 17 2017
%Y A112697 Fourth column (m=3) of triangle A112705.
%Y A112697 Cf. A000108.
%K A112697 nonn,easy
%O A112697 0,2
%A A112697 _Wolfdieter Lang_, Oct 31 2005